Math, asked by nishankdebasis4, 3 months ago


If f(x) =lower lt 0, upper lt x integration e^2tsin3t dt, then f'(x)= –

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \:  {e}^{2t} \: sin3t \: dt

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:f'(x)

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \sf \: Differentiation \: under \: the \: integral \: sign \:

 \bf \: The  \: Leibniz  \: Rule

 \sf \: \dfrac{d}{dx}\sf \displaystyle\int^{b} _{a} \sf \:f(x,t)dt =  \sf \displaystyle\int^{b} _{a} \sf \: \dfrac{ \partial}{ \partial \: x} f(x,t)dt + \dfrac{db}{dx}f(x,b) - \dfrac{da}{dx}f(x,a)

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \:  {e}^{2t} \: sin3t \: dt

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \sf \: \dfrac{d}{dx}f(x) = \dfrac{d}{dx}\sf \displaystyle\int^{x} _{0} \sf \:  {e}^{2t} \: sin3t \: dt

\rm :\longmapsto\: \sf \: f'(x) = \sf \displaystyle\int^{x} _{0} \sf \:\dfrac{ \partial}{ \partial \: x} \:  {e}^{2t} \: sin3t \: dt  + \dfrac{d}{dx}(x) \:  {e}^{2x} sin3x - 0

\rm :\longmapsto\:f'(x) = 0 + 1 \times  {e}^{2x} sin3x

\bf\implies \:f'(x) =  {e}^{2x} sin3x

Additional Information :-

  • The Leibniz rule for differentiating under the integral sign is also known as Feynman's trick or technique for integration.

Similar questions