Math, asked by riti94, 4 months ago

if f(X) = p tan X + q sin X + r, f (0) = -4√3 f (π/3) = -7√3 f' (π/3) = 3 then find p q and r​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{f(x)=p\,tanx+q\,sinx+r,\;f(0)=-4\sqrt{3},\;f\left(\dfrac{\pi}{3}\right)=-7\sqrt{3},f'\left(\dfrac{\pi}{3}\right)=3}

\underline{\textbf{To find:}}

\textsf{The values of p,q and r}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{f(x)=p\,tanx+q\,sinx+r}

\mathsf{(i)\;\;f(0)=-4\sqrt{3}}

\implies\mathsf{p\,tan\,0+q\,sin\,0+r=-4\sqrt{3}}

\implies\mathsf{p(0)+q(0)+r=-4\sqrt{3}}

\implies\boxed{\mathsf{r=-4\sqrt{3}}}

\mathsf{(ii)\;f\left(\dfrac{\pi}{3}\right)=-7}

\implies\mathsf{p\,tan\dfrac{\pi}{3}+q\,sin\dfrac{\pi}{3}+r=-7}

\implies\mathsf{p(\sqrt{3})+q(\dfrac{\sqrt{3}}{2})+(-4\sqrt{3})=-7}

\implies\mathsf{p(\sqrt{3})+q(\dfrac{\sqrt{3}}{2})=4\sqrt{3}-7}

\implies\mathsf{2\sqrt{3}\,p+\sqrt{3}\,q=8\sqrt{3}-14} ------------(1)

\mathsf{(iii)\;\;f'(x)=p\,sec^2x+q\,cosx}

\mathsf{But\;f'\left(\dfrac{\pi}{3}\right)=3}

\implies\mathsf{p\,sec^2\dfrac{\pi}{3}+q\,cos\dfrac{\pi}{3}=3}

\implies\mathsf{p(2)^2+q\left(\dfrac{1}{2}\right)=3}

\implies\mathsf{4\,p+q\left(\dfrac{1}{2}\right)=3}

\implies\mathsf{8\,p+q=6}

\implies\mathsf{q=6-8p}------------(2)

\textsf{Using (2) in (1), we get}

\implies\mathsf{2\sqrt{3}\,p+\sqrt{3}(6-8p)=8\sqrt{3}-14}

\implies\mathsf{2\sqrt{3}\,p+6\sqrt{3}-8\sqrt{3}p=8\sqrt{3}-14}

\implies\mathsf{8\sqrt{3}-8\sqrt{3}p=8\sqrt{3}-14}

\implies\mathsf{-8\sqrt{3}p=-14}

\implies\mathsf{p=\dfrac{-14}{-8\sqrt{3}}}

\implies\boxed{\mathsf{p=\dfrac{7}{4\sqrt{3}}}}

\mathsf{(2)\;\implies\;q=6-8\left(\dfrac{7}{4\sqrt{3}}\right)}

\mathsf{\implies\;q=6-2\left(\dfrac{7}{\sqrt{3}}\right)}

\mathsf{\implies\;q=6-\left(\dfrac{14}{\sqrt{3}}\right)}

\implies\boxed{\mathsf{q=\dfrac{6\sqrt{3}-14}{\sqrt{3}}}}

Similar questions