If f(x)=sin^4x+cos²x/sin²x+cos^4x, then f(2002) is:
OPTIONS ARE:
a)0
b)2
c)3
d)1
___________________________________________________
PLEAEE ANSWER IT CORRETLY AND BEWARE OF SPAMMING!
Answers
Answered by
11
Answer:
f(x)
={Sin^4(x)+cos^2(x)}/{sin^2(x)+cos^4(x)}
=[{Sin^2(x)}^2+cos^2(x)]/{sin^2(x)+cos^4(x)}
=[{1-cos^2(x)}^2+cos^2(x)]/{sin^2(x)+cos^4(x)}
={1–2.cos^2(x)+cos^4(x)+cos^2(x)}/{sin^2(x)+cos^4(x)}
={1-cos^2(x)+cos^4(x)}/{sin^2(x)+cos^4(x)}
={Sin^2(x)+cos^4(x)}/{sin^2(x)+cos^4(x)}
=1
So
f(x)=1,(for any value of x)
f(x) is constant function.
f(2002)=1.
Similar questions