If f(x) = sin x and F(x) = cos x , prove that
(1) [f(x)]^2 + [F(x)]^2 = 1
(ii) f (2x) = 2 f (x).F(x)
Answers
Answered by
4
Given,
f(x) = sin x and F(x) = cos x
To prove: [f(x)]² + [F(x)]² = 1
(sin x)² + (cos x)² = 1
sin² x + cos² x = 1
1 = 1
L.H.S = R.H.S
Hence proved.
In trigonometry sin 2x = 2sinxcosx
Here given,
f(2x) = 2f(x)F(x)
sin(2x) = 2sinxcosx
Hence proved.
Similar questions