Math, asked by Anonymous, 1 day ago

If f(x) = sin[x²]x + sin[-π²]x where [] denotes the greatest integer less than or equal to x then?

[A] none of these
[B] f(π/2) = 1
[C] f(π) = 2
[D] f(π/4) = -1

Answers

Answered by mathdude500
25

Appropriate Question :-

If f(x) = sin[π²]x + sin[-π²]x where [] denotes the greatest integer less than or equal to x then

[A] none of these

[B] f(π/2) = 1

[C] f(π) = 2

[D] f(π/4) = -1

\large\underline{\sf{Solution-}}

Given that

\rm \: f(x) = sin[ {\pi}^{2}]x + sin[ -  {\pi}^{2}]x \\

We know

Greatest Integer function reduces any real number to its nearest lowest Integer.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y  = [x]\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf [0,1) & \sf 0 \\ \\ \sf [1,2) & \sf 1 \\ \\ \sf [2,3) & \sf 2\\ \\ \sf [ - 1,0) & \sf  - 1\\ \\ \sf [ - 2, - 1) & \sf  - 2 \end{array}} \\ \end{gathered} \\

Now, We know

\rm \: \pi = 3.14 \\

\rm\implies \: {\pi}^{2} = 9.8596 \\

So,

\rm\implies \:[{\pi}^{2}] = [9.8596] = 9 \\

and

\rm\implies \:[ - {\pi}^{2}] = [ - 9.8596] =  - 10\\

Thus, given function

\rm \: f(x) = sin[ {\pi}^{2}]x + sin[ -  {\pi}^{2}]x \\

can be rewritten as

\rm \: f(x) = sin9x + sin( - 10x) \\

\rm \: f(x) = sin9x  - sin10x \\

So,

\rm \: f\bigg( \dfrac{\pi}{2} \bigg)  = sin\bigg( \dfrac{9\pi}{2} \bigg)  - sin\bigg( \dfrac{10\pi}{2} \bigg) \\

\rm \: f\bigg( \dfrac{\pi}{2} \bigg)  = sin\bigg( \pi + \dfrac{\pi}{2} \bigg)  - sin5\pi \\

\rm \: f\bigg( \dfrac{\pi}{2} \bigg)  = sin\bigg( \dfrac{\pi}{2} \bigg)  - 0 \\

\rm\implies \:\rm \: f\bigg( \dfrac{\pi}{2} \bigg)  = 1 \\

So, option [B] is correct.

Now, Consider

\rm \: f(\pi) = sin9\pi  - sin10\pi \\

\rm \: f(\pi) = 0 - 0 \\

\rm\implies \:\rm \: f(\pi) = 0 \\

It implies, option [C] is not correct.

Now, Consider

\rm \: f\bigg( \dfrac{\pi}{4} \bigg)  = sin\bigg( \dfrac{9\pi}{4} \bigg)  - sin\bigg( \dfrac{10\pi}{4} \bigg) \\

\rm \: f\bigg( \dfrac{\pi}{4} \bigg)  = sin\bigg(2\pi +  \dfrac{\pi}{4} \bigg)  - sin\bigg( \dfrac{5\pi}{2} \bigg) \\

\rm \: f\bigg( \dfrac{\pi}{4} \bigg)  = sin\bigg(\dfrac{\pi}{4} \bigg)  - sin\bigg(2\pi + \dfrac{\pi}{2} \bigg) \\

\rm \: f\bigg( \dfrac{\pi}{4} \bigg)  = \dfrac{1}{ \sqrt{2} } - sin\bigg( \dfrac{\pi}{2} \bigg)  \\

\rm \: f\bigg( \dfrac{\pi}{4} \bigg)  = \dfrac{1}{ \sqrt{2} } - 1\\

It implies, option [D] is not correct.

Hence, from above we concluded that

\rm\implies \: \:\boxed{\tt{   \: \rm \: f\bigg( \dfrac{\pi}{2} \bigg)  = 1 \:  \: }} \\

It implies, option [B] is correct.

Similar questions