Math, asked by anjalikarthikabeenab, 9 months ago

if f(x)=sinx g(x)=x^2,x element R then find (fog) (x)​

Answers

Answered by mithileshjha221989
0

Hope it is helpful......

Attachments:
Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(fog)(x)=sin\:x^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies f(x) = sin \: x \\  \\  \tt: \implies g(x) =  {x}^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies (fog)(x) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies (fog)(x) = f(g(x)) \\  \\ \tt: \implies (fog)(x) =sin( x ) \\  \\ \tt: \implies (fog)(x) =sin( {x}^{2} ) \\  \\  \green{\tt: \implies (fog)(x) =  sin\:x^{2} }\\\\ \blue{\huge{ \boxed{ \tt Some \: related \: concept}}} \\  \\   \orange{\tt \circ \: f(x) = sin \: x \to \:Period = 2\pi} \\  \\ \orange{\tt \circ \: f(x) = cos\: x \to \:Period = 2\pi} \\  \\ \orange{\tt \circ \: f(x) = tan \: x \to \:Period = \pi} \\  \\ \orange{\tt \circ \: f(x) =sec \: x \to \:Period = 2\pi} \\  \\ \orange{\tt \circ \: f(x) = cosec \: x \to \:Period = 2\pi} \\  \\ \orange{\tt \circ \: f(x) = cot \: x \to \:Period = \pi}

Similar questions