Math, asked by bidyutmajumder, 11 months ago

if f(x)=sinx° then find f'(x)​

Answers

Answered by theking20
1

Given,

A function f(x) = sin x

To Find,

The value of f'(x)

Solution,

To find the value of f'(x) we need to differentiate the function f(x) sin x.

Now,

The differentiation of the function f(x) = sin x is cos x

f(x) = sin x

f'(x) = d(sinx)/dx = cos x dx/dx = cos x

Hence, the value of f'(x) is cos x.

Answered by pulakmath007
18

\displaystyle \sf{ f '(x) =  \frac{\pi x}{180} cos \: {x}^{ \circ}  }

Given :

\displaystyle \sf{ f (x) =   sin \: {x}^{ \circ}  }

To find :

The value of f'(x)

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

\displaystyle \sf{ f (x) =   sin \: {x}^{ \circ}  }

\displaystyle \sf{ \implies f(x) = sin \:  \frac{\pi x}{180} }

Step 2 of 2 :

Find the value of f'(x)

\displaystyle \sf{ f(x) = sin \:  \frac{\pi x}{180} }

Differentiating both sides with respect to x we get

\displaystyle \sf{  f'(x) =  \frac{d}{dx}  \bigg( sin \:  \frac{\pi x}{180}\bigg)  }

\displaystyle \sf{ \implies f'(x) = cos \:\frac{\pi x}{180} \:  \times   \frac{d}{dx}  \bigg( \frac{\pi x}{180}\bigg)}

\displaystyle \sf{ \implies f'(x) = cos \:\frac{\pi x}{180} \:  \times  \frac{\pi }{180} \frac{d}{dx}  \bigg( x\bigg)}

\displaystyle \sf{ \implies f'(x) = cos \:\frac{\pi x}{180} \:  \times  \frac{\pi }{180}  \times 1}

\displaystyle \sf{ \implies f'(x) =\frac{\pi }{180} cos \:\frac{\pi x}{180} \:  }

\displaystyle \sf{ \implies f '(x) =  \frac{\pi x}{180} cos \: {x}^{ \circ}}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?

https://brainly.in/question/19870192

3. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

Similar questions