Math, asked by abhi6970, 1 year ago

If f(x) = square root of secx-1/ secx +1 , find f'(x) also find f'(x) (pi/3)=?​

Answers

Answered by Anonymous
15

Given \:  \: Question \:  \: Is \:  \:  \\  \\ f(x) =  \sqrt{ \frac{ \sec(x) - 1 }{ \sec(x) + 1 } }  \\  \\Answer \\  \\  \:  Replace \:  \:  \:  \:  \:  \sec(x)  \:  \:  \: by \:  \:  \:  \frac{1}{ \cos(x) }  \:  \:  \:  \: we \: have \\  \\ f(x) =  \sqrt{ \frac{ \frac{1}{ \cos(x) } - 1 }{ \frac{1}{ \cos(x) } + 1 } }  \\  \\  \\ f(x)  =   \sqrt{ \frac{1 -  \cos(x) }{1 +  \cos(x) } }  \\  \\ \\ 1  -   \cos(x)  = 2 \sin {}^{2} ( \frac{x}{2} )  \:  \:  \: \\  \\  and \:  \:  \\  \\ 1 +  \cos( \frac{x}{2} )  = 2 \cos {}^{2} ( \frac{x}{2} )  \\  \\  \\ f(x) =  \sqrt{ \frac{2 \sin {}^{2} ( \frac{x}{2} ) }{2 \cos {}^{2} ( \frac{x}{2} ) } }  \\  \\ \\  f(x) =  \sqrt{ \tan {}^{2} ( \frac{x}{2} ) }  \\  \\  \\ f(x) =  \tan( \frac{x}{2} )  \\  \\ Differentiate \:  \: both \:  \: sides \:  \: with \:  \: \\  respect \:  \: to \: x \:  \: we \:  \:  \: have. \\  \\ f {}^{1} (x) =  \frac{1}{2}  \sec {}^{2} ( \frac{x}{2} )  \\  \\ therefore \:  \: Differentiation \:  \: of \:  \:  \\  \sqrt{ \frac{ \sec(x)  - 1}{ \sec(x) + 1 } }  \:  \:  \: is \:  \:  \:  \frac{1}{2}  \sec {}^{2} ( \frac{x}{2} )  \\  \\  \\ for \:  \:  \: f {}^{1} ( \frac{\pi}{3} ) \:  \:  \: put \:  \:  \: x =  \frac{\pi}{3}  \:  \:  \: we \:  \: have \\  \\  \\ f {}^{1} ( \frac{\pi}{3} ) =  \frac{1}{2}  \sec {}^{2} ( \frac{\pi}{6} )  \\  \\  \\ f {}^{1} ( \frac{\pi}{3} ) =  \frac{1}{2} ( \frac{2}{ \sqrt{3} } ) {}^{2}  \\  \\  \\ f {}^{1} ( \frac{\pi}{3} ) =  \frac{2}{3}

Similar questions