Math, asked by rahulehh, 4 months ago

If ݂f(x) = \left \{ {{\frac{4^x - 3^x}{sin 2x}, x !=(not-equals-to) 0} \atop {k, x=0}} \right. is continuous, then k equals.

Attachments:

Answers

Answered by Anonymous
7

 { \huge{ \star}} \:  \:  \:   \:  \:  \Large\bf{ \underline{Overview :}}

   \natural \:  \tt \: \lim_{x \to \:a {}^{ + } } \: f( x) = f(a)  =\lim_{x \to \:a {}^{  -  } } \: f( x)   \:  \: for \:  \: any \:  \: function \:  \: to \:  \: be \:  \: continuous \:  \: any \:  \: x = a \\  \tt

 { \huge{ \star}} \:  \:  \:   \:  \:  \Large\bf{ \underline{Solution :}}

 \dashrightarrow  \tt \: f(x) =  \begin{cases}  \tt\frac{ {4}^{x} -  {3}^{x}  }{ \sin  2x}  \:  \:  \:  ;&  \tt \: x \not = 0 \\   \tt\: k \:  \:  \:  ;& \tt x  = 0\end{cases}  \\  \\  \\  \circ \sf \: \:  A/C ,\:  \tt \:  \:  \: function \:  \: f(x) \:  \: is \:  \: continuous \\  \\ \tt \: hence,  \\  \tt \:  \implies \: \lim_{x \to \:a {}^{ + } } \: f( x)  = f(x) = \lim_{x \to \:a {}^{  - } } \: f( x)   \\ \\  \implies \tt \lim_{x \to \:0 {}^{ + } } \:  \frac{ {4}^{x} -  {3}^{x}  }{ \sin \: 2x}  = k = \lim_{x \to 0 {}^{  -  } } \:  \frac{ {4}^{x} -  {3}^{x}  }{ \sin \: 2x}  \\  \\  \implies  \tt\lim_{x \to 0{}^{ + } } \frac{ \frac{ {4}^{x}  -  {3}^{x} }{2x} }{ \frac{ \sin \: 2x}{2x} }  = k=   \tt\lim_{x \to 0{}^{  - } } \frac{ \frac{ {4}^{x}  -  {3}^{x} }{2x} }{ \frac{ \sin \: 2x}{2x} }  \\  \\  \tt \:\implies  \tt\lim_{x \to 0{}^{ + } }  { \frac{ {4}^{x}  -  {3}^{x} }{2x} } = k = \tt\lim_{x \to 0{}^{  -  } }  { \frac{ {4}^{x}  -  {3}^{x} }{2x} } \:  \:  \: [ \because \lim_{x \to 0 } \frac{\sin x}{x} = 1 ] \\  \\  \tt   \implies\lim_{x \to \: 0 {}^{ + } } \frac{ \frac{d}{dx} ( {4}^{x}  -  {3}^{x}) }{ \frac{d}{dx}(2x) }  = k = \lim_{x \to \: 0 {}^{  -  } } \frac{ \frac{d}{dx} ( {4}^{x}  -  {3}^{x}) }{ \frac{d}{dx}(2x) } \\  \\  \tt  \implies\lim_{x \to \: 0 {}^{ + } } \frac{  ln(2)  \times   {2}^{(2x + 1)   } -  ln(3) \times  {3}^{x}}{ 2 } = k= \lim_{x \to \: 0 {}^{  -  } } \frac{  ln(2)  \times   {2}^{(2x + 1)   } -  ln(3) \times  {3}^{x}}{ 2 } \\  \\ \implies \:    {\tt\frac{ ln( \frac{4}{3} ) }{2} = k = \frac{ ln( \frac{4}{3} ) }{2} } \\  \\  \\   \therefore \:  \:  \:  \large{ \green{ { \underline{\boxed{ { \green{\tt{ k =  { \green{\frac{ ln( \frac{4}{3} ) }{2} }}}}}}}}}} \\  \\  \\   \tt \Box\: \:\:\:We \: \: know; \:  \:  ln(x)  =  2.303 \times log(x)  \\  \\  \tt \: putting \:  \: value \:  \\  \\  \tt \: k = 2.303 \times \frac{  log( \frac{4}{3} ) }{2} \\  \\   \implies\tt \: k   \approx \: log( \frac{4}{3} )  \\  \\  \tt \therefore \: \green{ \boxed{ \tt \: b) \:  \:  log( \frac{4}{3} ) }}

_______________________________________________

\:\:\:\:\:\:\:\: \:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\tt \colorbox{aqua}{@StayHigh}

Similar questions