Math, asked by hpgr1999, 1 year ago

If f(x)= sin^{-1} ( x^{2}/1+ x^{2}  )
then find range of f(x) is?

Answers

Answered by Anonymous
1
let f(x) = y 

y = sin⁻¹ {x²/1+x²}

since x²/1+x² can never be negative 

so siny = x²/1+x² 

⇒ x =  \sqrt{ \frac{siny}{1-siny} }

so 1-siny > 0 ⇒ 1 > siny 

⇒ y < π/2

again  \frac{siny}{1-siny}  ≥ 0

⇒ {siny}{1-siny}  ≥ 0           (since 1- siny can never be negative )

⇒  siny ≥ 0 ⇒ y ≥ 0 
 
so plotting in graph and evaluating by wave method we get y ∈ [0,π/2) 

which is the required range 

hpgr1999: thanks
Anonymous: np
Anonymous: thanks
Similar questions