Math, asked by ABHA1281, 1 month ago

If f (x)= (x-1)(1-3) on [1,3] , then the suitable C in [1,3] for the Rolle's theorem such that fcas=0 is
A] √2
B]√3
C]2
D]4​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{f(x)=(x-1)(x-3) on [1,3]}

\underline{\textbf{To find:}}

\textsf{The value of C according to Rolle's theorem}

\underline{\textbf{Solution:}}

\mathsf{f(x)=(x-1)(x-3)=x^2-4x+3}

\mathsf{f'(x)=2x-4}

\textsf{Since f(x) is a polynomial,}

\textsf{(i) f(x) is continuous on [1,3] }

\textsf{(ii) f(x) is differentiable in (1,3) }

\therefore\textsf{Conditions of Rolle's theorem are satisfied}

\textsf{By Rolle's theorem there exists a}\;\mathsf{c\,\in\,(1,3)}

\textsf{such that f'(c)=0}

\implies\mathsf{2c-4=0}

\implies\mathsf{2c=4}

\implies\mathsf{c=2\;\;and\;\;2\,\in\,(1,3)}

\underline{\textbf{Answer:}}

\textsf{Option (C) is correct}

Similar questions