If f(x)=x+1/x-1. Prove that f(2x)=3f(x)+1/f(x)-3
Answers
Answered by
47
f(x)=(x-1)/(x+1)
f(2x)=(2x-1)/(2x+1)
-------------------------------------------------------
Then go to the claim that f(2x)=(3f(x)+1)/(f(x)+3) and plug in f(x) = (x-1)/(x+1) and simplify
f(2x)=(3f(x)+1)/(f(x)+3)
f(2x)=(3*(x-1)/(x+1)+1)/((x-1)/(x+1)+3)
f(2x)=(3*(x-1)+1(x+1))/(x-1+3(x+1)) ... multiply every term by the inner LCD x+1
f(2x)=(3x-3+x+1)/(x-1+3x+3)
f(2x)=(4x-2)/(4x+2)
f(2x)=(2(2x-1))/(2(2x+1))
f(2x)=(2x-1)/(2x+1)
-------------------------------------------------------
So this proves that f(2x)=(3f(x)+1)/(f(x)+3) is true when f(x)=(x-1)/(x+1)
f(2x)=(2x-1)/(2x+1)
-------------------------------------------------------
Then go to the claim that f(2x)=(3f(x)+1)/(f(x)+3) and plug in f(x) = (x-1)/(x+1) and simplify
f(2x)=(3f(x)+1)/(f(x)+3)
f(2x)=(3*(x-1)/(x+1)+1)/((x-1)/(x+1)+3)
f(2x)=(3*(x-1)+1(x+1))/(x-1+3(x+1)) ... multiply every term by the inner LCD x+1
f(2x)=(3x-3+x+1)/(x-1+3x+3)
f(2x)=(4x-2)/(4x+2)
f(2x)=(2(2x-1))/(2(2x+1))
f(2x)=(2x-1)/(2x+1)
-------------------------------------------------------
So this proves that f(2x)=(3f(x)+1)/(f(x)+3) is true when f(x)=(x-1)/(x+1)
Answered by
3
Answer:
Step-by-step explanation:
f(x)=(x-1)/(x+1)
f(2x)=(2x-1)/(2x+1)
Then go to the claim that f(2x)=(3f(x)+1)/(f(x)+3) and plug in f(x) = (x-1)/(x+1) and simplify
f(2x)=(3f(x)+1)/(f(x)+3)
f(2x)=(3*(x-1)/(x+1)+1)/((x-1)/(x+1)+3)
f(2x)=(3*(x-1)+1(x+1))/(x-1+3(x+1)) ... multiply every term by the inner LCD x+1
f(2x)=(3x-3+x+1)/(x-1+3x+3)
f(2x)=(4x-2)/(4x+2)
f(2x)=(2(2x-1))/(2(2x+1))
f(2x)=(2x-1)/(2x+1)
So this proves that f(2x)=(3f(x)+1)/(f(x)+3) is true when f(x)=(x-1)/(x+1)
Similar questions
Social Sciences,
8 months ago
History,
8 months ago
Math,
1 year ago
Math,
1 year ago
French,
1 year ago