if f(x) = x-1/x+1 then f(ax) in terms of f(x) is given by
Answers
Answered by
6
Answers
∵ ƒ(x) = ( x - 1 ) / ( x + 1 ) ............ (1)
∴ ( x + 1 ). ƒ(x) = x - 1
∴ x. ƒ(x) + ƒ(x) = x - 1
∴ x. ƒ(x) - x = - 1 - ƒ(x)
∴ x. [ ƒ(x) - 1 ] = - [ 1 + ƒ(x) ]
∴ x = [ 1 + ƒ(x) ] / [ 1 - ƒ(x) ] .................. (2)
_________________________
∴ from (1),
ƒ(2x) = [ (2x) - 1 ] / [ (2x) + 1 ]
. . . . .= { 2( [1+ƒ(x)] / [1-ƒ(x)] ) - 1 } / { 2( [1+ƒ(x)] / [1-ƒ(x)] + 1 }
. . . . .= { 2[ 1 + ƒ(x) ] - [ 1 - ƒ(x) ] } / { 2[ 1 + ƒ(x) ] + [ 1 - ƒ(x) ] }
. . . . .= { 2 + 2.ƒ(x) - 1 + ƒ(x) } / { 2 + 2.ƒ(x) + 1 - ƒ(x) }
. . . . .= [ 1 + 3.ƒ(x) ] / [ 3 + ƒ(x) ]
∵ ƒ(x) = ( x - 1 ) / ( x + 1 ) ............ (1)
∴ ( x + 1 ). ƒ(x) = x - 1
∴ x. ƒ(x) + ƒ(x) = x - 1
∴ x. ƒ(x) - x = - 1 - ƒ(x)
∴ x. [ ƒ(x) - 1 ] = - [ 1 + ƒ(x) ]
∴ x = [ 1 + ƒ(x) ] / [ 1 - ƒ(x) ] .................. (2)
_________________________
∴ from (1),
ƒ(2x) = [ (2x) - 1 ] / [ (2x) + 1 ]
. . . . .= { 2( [1+ƒ(x)] / [1-ƒ(x)] ) - 1 } / { 2( [1+ƒ(x)] / [1-ƒ(x)] + 1 }
. . . . .= { 2[ 1 + ƒ(x) ] - [ 1 - ƒ(x) ] } / { 2[ 1 + ƒ(x) ] + [ 1 - ƒ(x) ] }
. . . . .= { 2 + 2.ƒ(x) - 1 + ƒ(x) } / { 2 + 2.ƒ(x) + 1 - ƒ(x) }
. . . . .= [ 1 + 3.ƒ(x) ] / [ 3 + ƒ(x) ]
Answered by
7
Answer:
Given that ƒ(x) = ( x - 1 ) / ( x + 1 ) ............ (1)
( x + 1 ). ƒ(x) = x - 1
x. ƒ(x) + ƒ(x) = x - 1
x. ƒ(x) - x = - 1 - ƒ(x)
x. [ ƒ(x) - 1 ] = - [ 1 + ƒ(x) ]
x = [ 1 + ƒ(x) ] / [ 1 - ƒ(x) ] .................. (2)
put x = ax in equation (1),
ƒ(ax) = [ (ax) - 1 ] / [ (ax) + 1 ]............... (3)
put the value of x from equation (2) in equation (3)...
ƒ(ax) = [ (a[ 1 + ƒ(x) ] / [ 1 - ƒ(x) ]) - 1 ] / [ (a[ 1 + ƒ(x) ] / [ 1 - ƒ(x) ]) + 1 ]
simplify the above equation.
Similar questions