If f(x)=x+1/x-1, then find f(f(f(2)))
Answers
Answered by
5
Answer:
Step-by-step explanation:
f(x) =(x+1/x-1)
f(f(x)) = [(x+1/x-1) + 1] / [(x+1/x-1) - 1]
f(f(f(x))) = {[(x+1/x-1) + 1] / [(x+1/x-1) - 1] + 1} / {[(x+1/x-1) + 1] / [(x+1/x-1) - 1] - 1}
f(f(f(2))) = {[(2+1/2-1) + 1] / [(2+1/2-1) - 1] + 1} / {[(2+1/2-1) + 1] / [(2+1/2-1) - 1] - 1}
= [(3 + 1)/(3 - 1) + 1]/[(3 + 1)/(3 - 1) - 1]
= [(4/2) + 1]/[(4/2) - 1]
= (2 + 1)/ (2 - 1)
= 3/1
= 3
Similar questions