Math, asked by saurabhsharma1230123, 8 hours ago

If f(x) =x +(1/x)=4, then find x² + (1/x ²)

Answers

Answered by Mankuthemonkey01
1

x + 1/x = 4

Square both sides

x² + 1/x² + 2x(1/x) = 4²

(Using (a + b)² = a² + b² + 2ab)

→ x² + 1/x² + 2 = 16

→ x² + 1/x² = 14

Hence the answer is 14.

Answered by misscuteangel
36

 \sf \red \bigstar \: GIVEN

 \\

➝ f (x) = x +(1/x) = 4,

 \\

 \sf \pink \bigstar \: SQUARE \: BOTH \: SIDES

 \sf \: ➝ \:  {x}^{2}  +  \dfrac{1}{x}  ^{2}  + 2x \: ( \dfrac{1}{x}) =  {4}^{2}

 \sf \green \bigstar \: USING \: PROPERTY \:  = (a + b) ^{2}

 \sf =  ({a}^{2} ) + 2ab + ( {b}^{2} )

 \sf \:  = (x ^{2} ) + ( \dfrac{1}{x}^{2}) + 2 = 16

 \sf  \red{\:  = x ^{2}  + ( \dfrac{1}{x} ^{2} )  = 14}

 \\

{ \sf {\green {hence \: the \: answer \: is \: 14.}}}

 \\

 \huge {\pink{\frak{@misscuteangel}}}

Similar questions