Math, asked by BLUESTARR, 15 hours ago

If f(x) = x^2 + 4x + 1 ; then find the equation of the tangent to the curve y = f(x) at (-1, -2).

★ Answer with proper Explanation.
★ Expect answer from best brainly users.
★ Spamming will be reported.
★ Best answer will be marked as Brainliest.​

Answers

Answered by AestheticSky
37

The equation of a curve is given by:

\\\quad\bullet\quad\boxed{\sf y-y_{1} = m\bigg(x-x_{1}\bigg)}\bigstar \\

Provided that, y₁ = – 2 and x₁ = – 1

\\\quad\dag \underline{\frak{ Calculating\: the\: derivative\: of\: the\: Equation:-}}\\

\\\quad\longrightarrow\quad\sf f(x) = x^{2}  + 4x + 1 \\

\\\quad\longrightarrow\quad\sf \dfrac{d}{dx}\bigg[ f(x)\bigg] = \dfrac{d}{dx} \bigg(x^{2}  + 4x + 1\bigg) \\

\\\quad\longrightarrow\quad\sf \dfrac{d}{dx}\bigg[ f(x)\bigg] = 2x + 4 + 0\\

\\\quad\therefore\quad \boxed{\sf \dfrac{d}{dx}\bigg[ f(x)\bigg] = 2x + 4 }\bigstar\\

\\\quad\dag \underline{\frak{Calculating\: the\: Gradient\: of\: the\: Equation:-}}\\

  • Just substitute the value of x coordinate in the derivative

\\\quad\longrightarrow\quad\sf \dfrac{dy}{dx} = 2x + 4\\

\\\quad\longrightarrow\quad\sf m = 2(-1)+4\\

\\\quad\longrightarrow\quad\sf m = -2+4\\

\\\quad\therefore\quad \boxed{\sf m = 2}\bigstar \\

\\\quad\dag \underline{\frak{\:Finding\: The\: Equation\: of\: the\: Tangent:-}}\\

\\\quad\longrightarrow\quad\sf y - y_{1} = m\bigg( x - x_{1} \bigg)\\

\\\quad\longrightarrow\quad\sf y - (-2) = 2\bigg[ x - (-1) \bigg]\\

\\\quad\longrightarrow\quad\sf y + 2 = 2\bigg( x + 1 \bigg)\\

\\\quad\longrightarrow\quad\sf y + 2 = 2x + 2\\

\\\quad\therefore\quad \underline{\boxed{\textsf{\textbf{ y - 2x = 0}}}}\bigstar \\

___________________________

Answered by мααɴѕí
10

Answer:

y =  {x}^{2}  + 4x + 1 \\ differentiating \: w.r.t \: x \: we \: get \\  \frac{dy}{dx}  = 2x + 4 \\  \frac{dy}{dx } | x =  - 1 = 2( - 1) + 4 = 2

Hence , slope of tangent at (-1 ,-2) is 2

So , equation of tangent line is

y - ( - 2) = 2(x - ( - 1) \\ 2x - y = 0

Step-by-step explanation:

Hope it helps ʘ‿ʘ

Similar questions