Math, asked by divaa70971, 9 months ago

If f(x)=x^2-5x+7 then evaluate f(2)+f(-2)+f(1/3)=

Answers

Answered by Anonymous
35

Answer:

 \dfrac{781}{27}

Step-by-step explanation:

Note:-

  • If f(x) is a function then f(a) is obtained by substituting a in place of xin the given function.
  • Here, given f(x) as x^2 -5x +7

f(2):-

  • (2)^2 -5(2)+7
  • 4-10+7
  • 1

f(-2):-

  • (-2)^2 -5(-2)+7
  • 4+10+7
  • 21

f(1/3):-

  • (1/3)^2 - 5(1/3) +7
  • 1/9 - 5/3 + 7
  •  \dfrac{3-5(9)+7(27)}{27}
  •  \dfrac{3-45+189}{27}
  •  \dfrac{147}{27}

Now , consider f(2) + f(-2) + f(1/3)

  • 1 + 21 +  \frac{147}{27}
  • 22 +  \frac{147}{27}
  •  \frac{22(27)+147}{27}
  •  \dfrac{781}{27}

Therefore,

f(2) + f(-2) + f(1/3) = 781/27

Answered by Anonymous
6

\bf \red{ \underline{ \underline{solution}}}

f(x) = x {}^{2}  - 5x + 7

  • Putting the value of x (2)

f(2) = 2 {}^{2}  - 5 \times 2 + 7

 \implies \: 4 - 10 + 7

 \implies \:  4 - 3

 \implies \: 1

  • Putting the value of x (-2)

f(2) =  \:  - 2 {}^{2}  - 5 \times ( - 2 )+ 7

 \implies  \:  4  + 10 + 7

 \implies \: 21

  • Putting the value of x (1/3)

f( \frac{1}{3} ) = ( \frac{1}{3} ) {}^{2}  - 5 \times  \frac{1}{3}  + 7

 \frac{1}{9 }  -  \frac{5}{3}  + 7

 \frac{1 - 15 + 63}{9}

  \implies \frac{ - 14 + 63}{9}

 \implies \:  \frac{49}{9}

Now,

f(2)+f(-2)+f(1/3)

= 1 + 21 + 49/9

=247/9

Similar questions