Math, asked by riyazhussain6903, 7 months ago

if f(x)=x^3-3x+1 and f(2a)=2f(a) find a.​

Answers

Answered by Anonymous
59

\rm\red{Answer - }

\rm\pink{Given -}

\rm f(x) = x^3 - 3x + 1

\rm f(2a) = 2f(a)

\rm\pink{To \:find - }

Value of a

\rm\red{Solution - }

\rm f(x) = x^3 - 3x + 1

\bf Calculating \:f(2a)

\rm f(2a) = (2a)^3 - 3(2a) + 1

\rm f(2a) = 8a^3 - 6a + 1 \: \:\:\:\: \:\longrightarrow\:\:\: eq 1

\bf Calculating \:2f(a)

\rm 2 f(a) = 2 [ a^3 - 3a + 1 ]

\rm 2 f(a) = 2a^3 - 6a + 2 \: \:\:\: \:\longrightarrow\:\:\: eq 2

\bf Equating \:the \:equations -

\rm 8a^3 - 6a + 1 = 2a^3 - 6a + 2

\rm 8a^3 - 6a + 1 - ( 2a^3 - 6a + 2 ) = 0

\rm 6a^3 - 6a + 6a + 1 - 2 = 0

\rm 6a^3 - 1 = 0

\rm a = \sqrt[3]{\dfrac{1}{6}}

\boxed{\rm\red{a = \dfrac{1}{ \sqrt[3]{6} }}}

Answered by khushnoorsidhu318
13

Step-by-step explanation:

doneeeeeeeeeeeeeeee

Attachments:
Similar questions