Math, asked by jotsanad, 3 months ago

if f(x)=x^3-3x^2+1/x(x-1) show that f(1/x)=f(1-x)

Answers

Answered by vikkiain
1

Answer:

sometimes is wrong

f(1/x) f(1-x)

Step-by-step explanation:

given \:  \:  \:  \:  \: f(x) =  {x}^{3}  - 3 {x}^{2} +  \frac{1}{x(x - 1)}   \\ now  \\  lhs \:  =  \: f( \frac{1}{x} ) =  { (\frac{1}{x} })^{3}  - 3( { \frac{1}{x} })^{2}  +  \frac{1}{ \frac{1}{x} ( \frac{1}{x}  - 1)}  \\  =  \frac{1}{ {x}^{3} }  -  \frac{3}{ {x}^{2} }  +  \frac{ {x}^{2} }{1 - x }  \\  \\ rhs = f(1 - x) = (1 - x)^{3}  - 3(1 - x)^{2}  +  \frac{1}{(1 - x)(1 - x - 1)}  \\  =  -  {x}^{3}  + 6x - 2 +  \frac{1}{x(x - 1)}  \\  so \:  \: f( \frac{1}{x}) \: is \: not \: eqval \: to \:  f(1 - x)

Similar questions