If f(x)=x^4-2x^3+3x^2-ax+b is divided by x-1 and x+1 the remainder are 5 and 19 respectively, then find a and b
Answers
A Polynomial f(x) if divided by a linear polynomial (x-a) leaves remainder which equals f(a).
So , getting back to our question -
f(x) = x^4 - 2x^3 + 3x^2 - ax + b
So , when it is divided by (x - 1) it’ll leave a remainder = f(1) = 5 (Given).
f(1) = 1^4 - 2×1^3 + 3×1^2 - a×1 + b = 5
=> 1 - 2 + 3 - a + b = 5
=> a - b = (-3) …. Eqn(1)
Now , Similarly -
f(-1) = (-1)^4 - 2×(-1)^3 + 3×(-1)^2 - a×(-1) + b = 19
=> 1 + 2 + 3 + a + b = 19
=> a + b = 13 …. Eqn(2)
Now , adding equations (1) and (2) , We’ll get -
(a+b) + (a-b) = (-3) + 13
=> 2a = 10 => a = 5
So , (a +b) = 13 implies b = 8
Hence , Values of a and b are 5 and 8 respectively.
Done!
HOPE THIS HELPS...☺☺☺
Answer:
47
Step-by-step explanation:
Given that the equation
f(x) = x4 – 2x3 + 3x2 – ax +b
When f(x) is divided by (x+1) and (x-1) , the remainders are 19 and 5 respectively .
∴ f(-1) = 19 and f(1) = 5
(-1)4 – 2 (-1)3 + 3(-1)2 – a (-1) + b = 19
⇒ 1 +2 + 3 + a + b = 19
∴ a + b = 13 ——- (1)
According to given condition f(1) = 5
f(x) = x4 – 2x3 + 3x2 – ax
⇒ 14 – 2 3 + 3 2 – a (1) b = 5
⇒ 1 – 2 + 3 – a + b = 5
∴ b – a = 3 —— (2)
solving equations (1) and (2)
a = 5 and b = 8
Now substituting the values of a and b in f(x) , we get
∴ f(x) = x4 – 2x3 + 3x2 – 5x + 8
Also f(x) is divided by (x-3) so remainder will be f(3)
∴ f(x)= x4 – 2x3 + 3x2 – 5x + 8
⇒ f(3) = 34 – 2 × 33 + 3 × 32 – 5 × 3 + 8
= 81 – 54 + 27 – 15 + 8
= 47
Therefore, f(x) = x4 – 2x3 + 3x2 – ax +b when a=3 and b= 8 is 47