Math, asked by aayushdeshmukh008, 2 months ago

If f(x)=(x+5)/(3x-4) and t=(5+4x)/(3x-1) then f(t)= a) 1 b) x c) 2 d) 0​

Answers

Answered by ravi2303kumar
2

Answer:

x  , which is option (b)

Step-by-step explanation:

given, f(x) = \frac{(x+5)}{(3x-4)}

also, t = \frac{(5+4x)}{(3x-1)}

so, f(t) = \frac{( \frac{5+4x}{3x-1}  )+5}{(3(\frac{5+4x}{3x-1}) -4)}

          = \frac {   \frac{(5(3x-1)+(5+4x)}{3x-1}   }     {\frac{3(5+4x)-4(3x-1)}{3x-1} }

          =  \frac{(5(3x-1)+(5+4x)}{3x-1}* \frac{3x-1} {3(5+4x)-4(3x-1)}

          = \frac{15x-5+5+4x}{1} * \frac{1} {15+12x-12x+4}

          = \frac{19x}{1} * \frac{1} {19}

          = x  , which is option (b)

Similar questions