Math, asked by vishalsundar, 1 year ago

If f(x) = [x] and g(x) = |x|, then evaluate:
1.(fog)(5/2)-(Gof)(-5/2)
relations and functions​

Answers

Answered by Anonymous
1

Answer \:  \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \:  \\  \\ f(x) = (x) \:  \:  \:  \: and \:  \:  \: g(x) =  |x|  \\  \\ fog(  \frac{5}{2}  ) = f(g( \frac{5}{2} )) \\  \\ fog( \frac{5}{2} ) = f( | \frac{5}{2} | ) \\  \\ fog( \frac{5}{2} ) = ( \frac{5}{2} ) \\  \\ fog( \frac{5}{2} ) = (2.5) \\  \\ fog (x) = 2  \:  \:  \: ... \:  \: i\\and  \\ gof( \frac{ - 5}{2} )  = g(f( - 2.5)) \\  \\ gof( \frac{ - 5}{2} ) = g( - 3) \\  \\ gof( \frac{ - 5}{2} ) =  | - 3|  \\  \\ gof( \frac{ - 5}{2} ) = 3 \:  \:  \: .... \: ii \\  \\ from \: i \: and \: ii \: we \: have \\  \\ fog( \frac{5}{2} ) - gof( \frac{ - 5}{2} ) =  - 1 \\  \\ Note \:  \:  \:  \:  \:  \: \:  \:  \\  \\ 1) \:  \:  \: here \:  \: () \:  \:  \\ Repsents \:  \: gif \\  \\ 2) \:  \:  \: if \:  \:  \: ( - x) =  - (x) \:  \:  \:  \: when \:  \: x \: is \: an \:  \\ integer \:  \\ ( - x) =  - (x) - 1 \:    \:  \: when \: x \: is \: not \:  \\ an \: integer \:

Similar questions