Math, asked by dev34bd, 2 months ago

If f (x) = x sin(1/x), x ~ 0, then lim f (x)=,
X->0
(a) 1
(b)0
(c)-1
(d) none​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle \lim_{x \to \: 0} \: x \: sin\dfrac{1}{x}

We know that

\rm :\longmapsto\: - 1 \leqslant sinx \leqslant 1 \:  \: where \: x \: is \: real

Now,

\rm :\longmapsto\:\displaystyle \lim_{x \to \: 0} \: x \: sin\dfrac{1}{x}

\rm \:  \:  =  \:  \: 0 \times (an \: oscillatory \: number \: lies \: between \:  - 1 \: and \: 1)

\rm \:  \:  =  \:  \: 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\rm :\implies\:\displaystyle \lim_{x \to \: 0} \bf \: x \: sin\dfrac{1}{x}  = 0}

Hence,

\boxed{\bf\implies \:Option \: (b) \: is \: correct}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x}  \:  -  \: 1}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x}  \:  -  \: 1}{x} \:  =  \:  log(a)}}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{log(1 \:  +  \: x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {sin}^{ - 1}x }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(7)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {tan}^{ - 1}x }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(8)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \:  {(1 + x)}^{ \frac{1}{x} }  \:  =  \: e }}}}}} \\ \end{gathered}

\begin{gathered}(9)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to  \infty } \:  {\bigg(1 + \dfrac{1}{x} \bigg) }^{x}  \:  =  \: e }}}}}} \\ \end{gathered}

Similar questions