If f(x)=x/[sqrt(1-x^2)],
then (fofof)(x)=
Answers
Answered by
42
hi friend,
f(x)=x/√(1-x²)
→f(f(x))=[ x/√(1-x²)]/√(1-(x/√(1-x²))²)
→[x/√(1-x²)]/√(1-(x²/1-x²))
→[x/√(1-x²)]/√(1-2x²/1-x²)
→x/√(1-2x²)
now ,f(f(f(x)))=[x/√(1-x²)]/√(1-2(x/√(1-x²)²)
→[x/√(1-x²)]/√(1-(2x²/1-x²))
→[x/√(1-x²)]/√(1-3x²/1-x²)
→x/√(1-3x²)
I hope this will help u :)
f(x)=x/√(1-x²)
→f(f(x))=[ x/√(1-x²)]/√(1-(x/√(1-x²))²)
→[x/√(1-x²)]/√(1-(x²/1-x²))
→[x/√(1-x²)]/√(1-2x²/1-x²)
→x/√(1-2x²)
now ,f(f(f(x)))=[x/√(1-x²)]/√(1-2(x/√(1-x²)²)
→[x/√(1-x²)]/√(1-(2x²/1-x²))
→[x/√(1-x²)]/√(1-3x²/1-x²)
→x/√(1-3x²)
I hope this will help u :)
Answered by
23
f(x) = x/√ ( 1 -x²)
f( f( x)) = f(x)/√{ 1 - f(x)² }
= x/√(1 - x²)/√{ 1 -x²/( 1 -x²) }
= x/√(1 -x²)/√( 1 - x² - x²)/√(1 -x²)
= x/√( 1 -2x²)
f( f( f(x)) = f(f(x))/√( 1 - f(f(x)²)
= x/√( 1 - 2x²)/√{ 1 - x²/( 1- 2x²)}
= x/√(1 - 3x²)
so, ( fofofo)x = f(f(f(x)) = x/√(1 -3x²)
f( f( x)) = f(x)/√{ 1 - f(x)² }
= x/√(1 - x²)/√{ 1 -x²/( 1 -x²) }
= x/√(1 -x²)/√( 1 - x² - x²)/√(1 -x²)
= x/√( 1 -2x²)
f( f( f(x)) = f(f(x))/√( 1 - f(f(x)²)
= x/√( 1 - 2x²)/√{ 1 - x²/( 1- 2x²)}
= x/√(1 - 3x²)
so, ( fofofo)x = f(f(f(x)) = x/√(1 -3x²)
Similar questions