Math, asked by rohannanda2904, 2 days ago

If f(x)=x tan^ -1 x, then f'(1) equals​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

f(x)=x\,\tan^{-1}(x)

\implies\,f^{\prime}(x)=\tan^{-1}(x)\cdot\dfrac{d}{dx}(x)+x\cdot\dfrac{d}{dx}\left(\tan^{-1}(x)\right)

We know,

\boxed{\dfrac{d}{dx}\Big\{\tan^{-1}(x)\Big\}=\dfrac{1}{1+x^2}}

So,

\implies\,f^{\prime}(x)=\tan^{-1}(x)\cdot1+\dfrac{x}{1+x^{2}}

\implies\,f^{\prime}(x)=\tan^{-1}(x)+\dfrac{x}{1+x^{2}}

Now,

\implies\,f^{\prime}(1)=\tan^{-1}(1)+\dfrac{1}{1+(1)^{2}}

\implies\,f^{\prime}(1)=\dfrac{\pi}{4}+\dfrac{1}{1+1}

\implies\,f^{\prime}(1)=\dfrac{\pi}{4}+\dfrac{1}{2}

Similar questions