Math, asked by meetpasad67, 2 months ago

if f(x)=x tan^-1(x) then f'(√3)= ?​

Answers

Answered by anantmittal911
1

f(x)=xtan^-1(x). (given)

apply product rule,

f'(x)=x/1+x^2+tan^-1(x)

f'(√3)=√3/4+π/3

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = x \:  {tan}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}(x \:  {tan}^{ - 1}x )

We know,

Product Rule of Differentiation

\rm :\longmapsto\:\dfrac{d}{dx}(u.v) =  \: u \: \dfrac{d}{dx}v \:  +  \: v \: \dfrac{d}{dx}u

So,

Here,

\rm :\longmapsto\:u \:  =  \: x

\rm :\longmapsto\:v \:  =  \:  {tan}^{ - 1}x

On substituting the values in above formula, we get

\rm :\longmapsto\:f'(x) = x \: \dfrac{d}{dx} {tan}^{ - 1}x \:  +  \:  {tan}^{ - 1}x \: \dfrac{d}{dx}x

\rm :\longmapsto\:f'(x) = x \times \dfrac{1}{1 +  {x}^{2} } \:  +  \:  {tan}^{ - 1}x \times 1

\red{\bigg \{ \because \:  \tt \: \dfrac{d}{dx}x = 1\bigg \}} \\ \red{\bigg \{ \because \: \tt \: \dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} }\bigg \}}

\rm :\longmapsto\:f'(x) =  \dfrac{x}{1 +  {x}^{2} } \:  +  \:  {tan}^{ - 1}x

\rm :\longmapsto\:f'( \sqrt{3} ) =  \dfrac{\sqrt{3} }{1 +  {( \sqrt{3} )}^{2} } \:  +  \:  {tan}^{ - 1}( \sqrt{3} )

\rm :\longmapsto\:f'( \sqrt{3} ) =  \dfrac{\sqrt{3} }{1 +3} \:  +  \:  {tan}^{ - 1}\bigg(tan\dfrac{\pi}{3} \bigg)

\rm :\longmapsto\:f'( \sqrt{3} ) =  \dfrac{\sqrt{3} }{4} \:  +  \:  \dfrac{\pi}{3}

Additional information :-

 \red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}k = 0}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} \sqrt{x}  = \dfrac{1}{2 \sqrt{x} } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}secx =   \: secx \: tanx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}tanx =   \: sec^{2} x}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cotx =    - \: cosec^{2} x}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sin}^{ - 1}x  = \dfrac{1}{ \sqrt{1 -  {x}^{2} } } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cos}^{ - 1}x  = \dfrac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1}x  = \dfrac{ -  \: 1}{ x \: \sqrt{{x}^{2}  - 1} } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sec}^{ - 1}x  = \dfrac{\: 1}{ x \: \sqrt{{x}^{2}  - 1} } }

Similar questions