Math, asked by pranavsivan2003, 5 months ago

IF f(x)=x÷(x-1)
find(1) f o f(x)
(2)inverse of f​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{f(x) = \dfrac{x}{x - 1} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{f \: o \: f \: (x)} \\ &\sf{ {f}^{ - 1}(x) } \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: : Given \: f(x) \:  = \dfrac{x}{x - 1}

\displaystyle\longrightarrow  \:  \tt \: Now \:  \:  \: fof(x)  \:  = \: f \:  \{f(x) \}

\displaystyle\longrightarrow  \tt \:  = f \bigg(\dfrac{x}{x - 1} \bigg)

\displaystyle\longrightarrow  \tt \:  = \dfrac{\dfrac{x}{x - 1}}{\dfrac{x}{x - 1} - 1}

\displaystyle\longrightarrow  \tt \:  = \dfrac{\dfrac{x}{x - 1}}{\dfrac{ \cancel{x} -  \cancel{x} + 1}{x - 1}}

\displaystyle\longrightarrow  \tt \: =  \dfrac{x}{x - 1} \times (x - 1)

\bf\implies  \boxed{\:fof(x) \:  = x}

\bf\implies \:f(x) \:  =  \:  {f}^{ - 1} (x)

\bf\implies  \boxed{\: {f}^{ - 1} (x) = \dfrac{x}{x - 1}}

Similar questions