Math, asked by mandaltapati70, 1 month ago

. If f(x) = x|
x| , prove that f'(x) = |2x|.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = x |x|

Let first define the function, f(x)

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x, \:  \: when \: x < 0} \\ &\sf{ \: x, \:  \: whenx \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: f(x) = x|x|  = \begin{cases} &\sf{ -  {x}^{2} , \:  \: when \: x < 0} \\ &\sf{ \:  {x}^{2} , \:  \: whenx \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Let we first check the differentiability of f(x) at x = 0.

We know,

A function f(x) is said to be differentiable iff

\boxed{ \rm{ \displaystyle\lim_{x \to a^-} \:  \dfrac{f(x) - f(a)}{x - a} = \displaystyle\lim_{x \to a^ + } \:  \dfrac{f(x) - f(a)}{x - a}}}

So, Consider, Left Hand Derivative,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^-} \: \dfrac{f(x) - f(0)}{x - 0}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^-} \dfrac{ -  {x}^{2} - 0}{x }

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^-} \dfrac{ -  {x}^{2}}{x }

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^-} ( - x)

\rm \:  =  \:  \: 0

So,

\bf :\longmapsto\:\displaystyle\lim_{x \to 0^-} \: \dfrac{f(x) - f(0)}{x - 0}  = 0

Now, Consider Right Hand Derivative

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^ + } \: \dfrac{f(x) - f(0)}{x - 0}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^ + } \dfrac{{x}^{2} - 0}{x }

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^ + } \dfrac{{x}^{2}}{x }

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^ + }x

\rm \:  =  \:  \: 0

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^ + } \: \dfrac{f(x) - f(0)}{x - 0}  = 0

Hence, we concluded that,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^-} \dfrac{f(x) - f(0)}{x - 0} = \displaystyle\lim_{x \to 0^ + } \dfrac{f(x) - f(0)}{x - 0}

\bf\implies \:f(x) \: is \: differentiable \: at \: x \:  =  \: 0

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: f'(x) = \begin{cases} &\sf{ -  2{x} , \:  \: when \: x < 0} \\ &\sf{ \:  2{x} , \:  \: whenx \geqslant 0} \end{cases}\end{gathered}\end{gathered}

\bf\implies \:f'(x) = 2 |x|

Similar questions