Math, asked by sivamadhurnisha, 5 months ago

if f(x)=x2 -1/x2, then value of f(x)+f(1/x) is​

Answers

Answered by devyanisrivastav
3

11th

Maths

Relations and Functions

Algebra of Real Functions

If f(x) = x^3 - x^2 + x + 1...

MATHS

Asked on December 27, 2019 byDivyanshu Adil

If f(x)=x3−x2+x+1, then the value of 2f(1)+f(−1) will be

A

5

B

2

C

0

D

-2

EASY

Share

Study later

ANSWER

Consider the given function.

f(x)=x3−x2+x+1

Put x=1

f(1)=1−1+1+1

f(1)=2

Put x=−1

f(−1)=−1−1−1+1

f(−1)=−2

Since,

2f(1)+f(−1)

=22−2

=0

Hence, this is the answer.

Answered by pulakmath007
4

SOLUTION

GIVEN

\displaystyle \sf{ f(x) =  {x}^{2}   -  \frac{1}{ {x}^{2} } }

TO DETERMINE

\displaystyle \sf{ f(x)  + f \bigg(  \frac{1}{x} \bigg) }

EVALUATION

Here it is given that

\displaystyle \sf{ f(x) =  {x}^{2}   -  \frac{1}{ {x}^{2} } }

Now

\displaystyle \sf{  f \bigg(  \frac{1}{x} \bigg) = {\bigg(  \frac{1}{x} \bigg) }^{2} -  \frac{1}{ {\bigg(  \frac{1}{x} \bigg) }^{2}}   }

\displaystyle \sf{   \implies \: f \bigg(  \frac{1}{x} \bigg) =  \frac{1}{ {x}^{2} }  -  \frac{1}{  \frac{1}{ {x}^{2} } }   }

\displaystyle \sf{   \implies \: f \bigg(  \frac{1}{x} \bigg) =  \frac{1}{ {x}^{2} }  -  {x}^{2}  }

Thus we have

\displaystyle \sf{ f(x)  + f \bigg(  \frac{1}{x} \bigg) }

\displaystyle \sf{ =   {x}^{2}   -  \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{2} }  -  {x}^{2}    }

=  0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If g(x)=−7x−1 and h(x)=2x+3, what is −3(g+h)(x)?

https://brainly.in/question/26186966

2. let f and g be thwe function from the set of integers to itself defined by f(X) =2x +1 and g (X)=3x+4 then the compositi...

https://brainly.in/question/22185565

Similar questions