If f(x) = x² - 3x + 4, then find the value of x satisfying f(x) = f(2x + 1).
Answers
Answered by
113
f(x) = x² - 3x + 4
f(2x + 1) = (2x + 1)² - 3(2x + 1) + 4
= 4x² + 4x + 1 - 6x - 3 + 4
= 4x² + 2x + 2
now, f(x) = f(2x + 1)
x² - 3x + 4 = 4x² + 2x + 2
or, 4x² - x² + 2x + 3x + 2 - 4 = 0
or, 3x² + 5x - 2 = 0
or, 3x² + 6x - x - 2 = 0
or, 3x(x + 2) - 1(x + 2) = 0
or, (3x - 1)(x + 2) = 0
hence, x = -2 and 1/3
f(2x + 1) = (2x + 1)² - 3(2x + 1) + 4
= 4x² + 4x + 1 - 6x - 3 + 4
= 4x² + 2x + 2
now, f(x) = f(2x + 1)
x² - 3x + 4 = 4x² + 2x + 2
or, 4x² - x² + 2x + 3x + 2 - 4 = 0
or, 3x² + 5x - 2 = 0
or, 3x² + 6x - x - 2 = 0
or, 3x(x + 2) - 1(x + 2) = 0
or, (3x - 1)(x + 2) = 0
hence, x = -2 and 1/3
balajinivesh:
nice bro
Answered by
61
Answer:
-1 and 2/3
Step-by-step explanation:
f(x) = x² - 3x + 4
f(2x + 1) = f(t) = t² - 3t + 4, where t = 2x+1
But given:
f(x) = f(2x + 1)
x² - 3x + 4 = t² - 3t + 4
x² - 3x = t² - 3t
t² -x² - 3t + 3x = 0
(t - x)(t+x) -3(t - x) = 0
(t - x) [t + x - 3] = 0
(2x +1 - x) [2x +1 + x - 3] = 0
(x +1) [3x - 2] = 0
x + 1 = 0, 3x - 2 =0
x = -1, 2/3
The required values of x are
-1 and 2/3
Similar questions