Math, asked by Anonymous, 1 month ago

If f ( x ) = x² , Find f ' ( x ) using First Principal of Differentiation​

Answers

Answered by Aryan0123
36

Solution :-

First principal of Differentiation states that for any function f(x), it's differentiation would be:

 \boxed{ \red{ \boldsymbol{f'(x) =  \lim_{h \to 0} \:  \frac{f(x + h) - f(x)}{h} }}} \\  \\

\\

According to the question,

  • f (x) = x²

→ So, f (x + h) = (x + h)²

\\

Now,

 \implies \sf{f'(x) =  \lim_{h \to 0} \: \dfrac{(x + h)^{2}  -  {x}^{2} }{h} } \\  \\

Split (x + h)² using identity (a + b)² = a² + b² + 2ab

 \implies \sf{f'(x) =   \lim_{h \to 0} \:  \dfrac{ {x}^{2}  +  {h}^{2}  + 2xh -  {x}^{2} }{h} } \\  \\

 \implies \sf{f'(x) =   \lim_{h \to 0} \: \dfrac{  \cancel{{x}^{2}}  +  {h}^{2}  + 2xh -   \cancel{{x}^{2}} }{h} } \\  \\

 \implies \sf{f'(x) =   \lim_{h \to 0} \:  \:  \dfrac{ {h}^{2}  + 2xh }{h} } \\  \\

\implies \sf{f'(x) =   \lim_{h \to 0} \:  \:  \dfrac{  \not{h}(h + 2x)}{ \not{h}} } \\  \\

\implies \sf{f'(x) =   \lim_{h \to 0} \:  \:  (h + 2x)} \\  \\

Substituting the limits,

\implies \sf{f'(x) = (0 + 2x)} \\  \\

 \therefore \:  \boxed{ \pink{ \bf{f'(x) = 2x}}} \\  \\

Similar questions