if f(x) = x4 - 4x3 + 3x2 - 2x + 1 then find whether f(0) ×(-1)=f(2)
Answers
Answered by
27
If f(x) = x4 - 4x3 + 3x2 - 2x + 1 then find whether f(0) ×(-1)=f(2)
f(x) = x4 - 4x3 + 3x2 - 2x + 1
f(0) = (0)4 – 4(0)3 + 3(0)2 – 2(0) + 1
= 1
f(0) ×(-1) = (1)(-1) = -1
f(x) = x4 - 4x3 + 3x2 - 2x + 1
f(2) = (2)4 – 4(2)3 + 3(2)2 – 2(2) + 1
= 16 – 32 + 12 – 4 + 1
= -7
Conclusion:
f(0) ×(-1) is not equal to f(2)
f(0) ×(-1) ≠ f(2)
Answered by
5
Answer:
Step-by-step explanation:
If f(x) = x4 - 4x3 + 3x2 - 2x + 1 then find whether f(0) ×(-1)=f(2)
f(x) = x4 - 4x3 + 3x2 - 2x + 1
f(0) = (0)4 – 4(0)3 + 3(0)2 – 2(0) + 1
= 1
f(0) ×(-1) = (1)(-1) = -1
f(x) = x4 - 4x3 + 3x2 - 2x + 1
f(2) = (2)4 – 4(2)3 + 3(2)2 – 2(2) + 1
= 16 – 32 + 12 – 4 + 1
= -7
Conclusion:
f(0) ×(-1) is not equal to f(2)
f(0) ×(-1) ≠ f(2)
Similar questions