Math, asked by guptaananya2005, 1 month ago

If f((x+y)/2)=(f(x)+f(y))/2 for all real values of x and y and f'(0) = - 1 then find f(5).

#Spammers please far away.

# Quality answer needed.

# Have exam on Monday, prepare for that. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f\bigg[\dfrac{x + y}{2}\bigg] = \dfrac{f(x) + f(y)}{2}

Now,

By definition of differentiation, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}  \frac{f(x + h) - f(x)}{h}

So, can also be rewritten as

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{f(x + y) - f(x)}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{f\bigg( \dfrac{2x + 2y}{2}\bigg)  - f(x)}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{\bigg( \dfrac{f(2x) + f(2y)}{2}\bigg)  - f(x)}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{ \dfrac{f(2x) + f(2y)}{2}  - f(x)}{y}

 \boxed{\bf :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{f(2x) + f(2y)  - 2f(x)}{2y}  -  -  - (1)}

Given that,

\rm :\longmapsto\:f\bigg[\dfrac{x + y}{2}\bigg] = \dfrac{f(x) + f(y)}{2}

Replace x by 2x and y by 0, we get

\rm :\longmapsto\:f\bigg[\dfrac{2x + 0}{2}\bigg] = \dfrac{f(2x) + f(0)}{2}

\rm :\longmapsto\:f\bigg[\dfrac{2x}{2}\bigg] = \dfrac{f(2x) + f(0)}{2}

\rm :\longmapsto\:f(x) = \dfrac{f(2x) + f(0)}{2}

 \boxed{\bf :\longmapsto\:2f(x) = f(2x)  +  f(0) - -   - (2)}

On substituting equation (2) in equation (1), we get

{\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{f(2x) + f(2y)  - (f(2x)  +  f(0))}{2y}}

{\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{f(2x) + f(2y)  - f(2x) - f(0)}{2y}}

{\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{ f(2y) - f(0)}{2y}}

can be rewritten as

{\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0}  \frac{ f(2y) - f(0)}{2y - 0}}

{\rm :\longmapsto\:f'(x) = f'(0)}

As it is given that,

\rm :\longmapsto\:f'(0) =  -  \: 1

So, using this value we get

{\rm :\longmapsto\:f'(x) =  - 1}

So, on integrating both sides w. r. t. x, we get

\rm : \displaystyle\longmapsto\: \int \: f'(x)dx \:  = -   \:  \int \: 1 \: dx

\rm :\longmapsto\:f(x) =  - x + c

where c is arbitrary constant.

So,

\bf\implies \:\:f(5) =  - 5 + c

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions