Math, asked by prabaldam683, 3 months ago

if f(x, y) = 3x²-8xy+6y² (0<x<1, 0<y<1).find fx(x|y) and fy(y|x) & show that x and y are independent.

Answers

Answered by asmighatul
0

Answer:

A

−2010

2010

F(x)dx=∫

0

2011

F(x)dx

Our experts are building a solution for this

Answered by pulakmath007
1

SOLUTION

GIVEN

 \sf{f(x, y) = 3 {x}^{2}  - 8xy + 6 {y}^{2}   \:  \:  \: ( 0 &lt; x &lt; 1,0 &lt; y &lt; 1) }

TO DETERMINE

 \sf{1. \:  \: f_x(x|y) \:  \:   and  \:  \: f_y(y|x)}

2. X and Y are dependent

EVALUATION

Here it is given that

 \sf{f(x, y) = 3 {x}^{2}  - 8xy + 6 {y}^{2}   \:  \:  \: ( 0 &lt; x &lt; 1,0 &lt; y &lt; 1) }

Now

 \sf{f_x(x)}

\displaystyle  \sf{ = \int\limits_{- \infty}^{\infty} f(x,y) \, dy }

\displaystyle  \sf{ = \int\limits_{0}^{1} (3 {x}^{2} - 8xy + 6 {y}^{2}  ) \, dy}

\displaystyle  \sf{ =3 {x}^{2} - 4x +2 \:  \:   \:  \:  \: \: ,  \: 0 &lt; x &lt; 1}

Again

 \sf{f_y(y)}

\displaystyle  \sf{ = \int\limits_{- \infty}^{\infty} f(x,y) \, dx}

\displaystyle  \sf{ = \int\limits_{0}^{1} (3 {x}^{2} - 8xy + 6 {y}^{2}  ) \, dx}

\displaystyle  \sf{ =1 - 4y + 6 {y}^{2}  \:  \:   \:  \:  \: \: ,  \: 0 &lt; y &lt; 1}

1.

 \sf{ f_x(x|y) }

 \displaystyle \sf{ =   \frac{f(x,y)}{f_y(y)}  }

 \displaystyle \sf{ =   \frac{(3 {x}^{2}  - 8xy + 6 {y}^{2} )}{(6 {y}^{2}  - 4y + 1)}  \:  \:  \: ( 0 &lt; x &lt; 1,0 &lt; y &lt; 1) }

Again

 \sf{ f_y(y|x) }

 \displaystyle \sf{ =   \frac{f(x,y)}{f_x(x)}  }

 \displaystyle \sf{ =   \frac{(3 {x}^{2}  - 8xy + 6 {y}^{2} )}{(3 {x}^{2}  - 4x + 2)}  \:  \:  \: ( 0 &lt; x &lt; 1,0 &lt; y &lt; 1) }

2. From above we observe that

 \sf{f(x, y)  \ne \:  f_x(x). f_y(y) }

So X and Y are dependent

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Generally, what is the range of coefficient of skewness for data where the mode is ill-defined?(A) 0 to 1 (B) -1 to +1

https://brainly.in/question/26142979

2. if arithmetic mean of a seties is 45 and median is 40 then calculate the value of mode of that series

https://brainly.in/question/31548199

Similar questions