Math, asked by Troll102, 1 year ago

If f(y) =  \frac{y}{\sqrt{1 - y^{2}}} , g(y) =  \frac{y}{\sqrt{1 + y^{2}}} then show that (fog) (y) = y.

Answers

Answered by MaheswariS
0

Answer:


(fog)(y) = y


Step-by-step explanation:


In the attachment I have answered this problem.


See the attachment for detailed solution.


I hope this answer helps you


Attachments:
Answered by hukam0685
3
Solution:

f(y) =  \frac{y}{ \sqrt{1 -  {y}^{2} } }  \\  \\ g(y) =  \frac{y}{ \sqrt{1  +  {y}^{2} } } \\  \\
for fog(y) put the value of g(y) into f(y)

I.e.
f(g(y)) = \frac{ \frac{y}{ \sqrt{1 +  {y}^{2} } } }{ \sqrt{1 -  { (\frac{y}{ \sqrt{1 +  {y}^{2} } } )}^{2} } }  \\  \\  = \frac{ \frac{y}{ \sqrt{1 +  {y}^{2} } } }{ \sqrt{1 -  { (\frac{{y}^{2}}{1 +  {y}^{2} }  )}} }  \\  \\ \\  = \frac{ \frac{y}{ \sqrt{1 +  {y}^{2} } } }{ \sqrt{ { \frac{{ 1 -  {y}^{2} + y}^{2}}{1 +  {y}^{2} }  }} }  \\  \\  =  \frac{ \frac{y}{ \sqrt{1 +  {y}^{2} } } }{ \frac{1}{ \sqrt{1 +  {y}^{2} } } }  \\  \\  = y \\  \\ fog(y) = y \\  \\
Similar questions