If f (y)=(y^4)-4 (y^3)+8(y^2) -my + n is divided by y+1 and y-1, we get remainders as 10 and 16 respectively. Find the values of m and n
Answers
Answered by
1
Answer:
m=-4
n=7
Step-by-step explanation:
For y+1
(y^4)-4 (y^3)+8(y^2) -my + n=10
put the value of y= -1
((-1)^4)-4 (-1^3)+8(-1^2) -m(-1) + n=10
1-4(-1)+8*1+m+n=10
1+4+8+m+n=10
13+m+n=10
m+n=-3.......(A)
For y-1
(y^4)-4 (y^3)+8(y^2) -my + n=16
put the calue of y=1
(1^4)-4 (1^3)+8(1^2) -m1 + n=16
1-4+8-m+n=16
5-m+n=16
-m+n=11........(B)
solve equation A and B
A+B
(m+n)+(-m+n)=11+3
m+n-m+n=14
2n=14
n=14/2
n=7..........................Answer(1)
put the value of n in A
m+n=3
m+7=3
m=3-7
m=-4...................Answer(2)
Similar questions