If F (z) = u + iv is analytic function find f (z), if u = ex ( x cosy – y sin y)
Answers
Answered by
4
Answer:
It is F(z) = u + iv, F(z)cc = u - iv . u =( F + Fcc )/2 , v =-i ( F - Fcc )/2 . Follows
u - v =Re[(1+i)F(z)] = Re[(1+i)(u+iv)].. It is
(1+i)(u+iv) = (u-v) +i( u + v).
Take U =u-v = e^x(cosy-siny) , V = u+v . Both function satisfy the Cauchy- Riemann equations
U_x = V_y (1)
U_y = -V_x (2)
From (1) on has U_x =e^x(cosy -siny) = V_y . Integrating give
V = e^x(siny + cosy) + H(x). From (2)
U_y = -e^x(siny + cosY) = -V_x , obtain H’(x)=0 i.e. H(x) =C Then
V = u + v =e^x(siny + cosy) +C . Combining with
u-v = e^x(cosy - siny) obtain
F(z) = u + iv = e^x(cosy +isiny) +k = e^z +k ,k complex constant.
Similar questions
Math,
2 months ago
Economy,
2 months ago
Math,
2 months ago
Computer Science,
5 months ago
Social Sciences,
5 months ago