Physics, asked by padmabhujji38pao7hc, 9 months ago

If | f1 X f2 |= F1 . F2 then | f1 + f2 | = ?

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

\green{\boxed{ |\vec{F}_1 + \vec{F}_2| = \sqrt{(F_1)^2 + (F_2)^2 + \sqrt{2} F_1F_2}}}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Here

\to |\vec{F}_1\times \vec{F}_2| = \vec{F}_1.\vec{F}_2

If angle between F_1, F_2 is \theta

\to F_1F_2sin(\theta) = F_1F_2cos(\theta)

\to sin(\theta) = cos(\theta)

\to tan(\theta) = 1

\to \theta = 45^o

So,

\to |\vec{F}_1 + \vec{F}_2|

= \sqrt{(F_1)^2 + (F_2)^2 + 2F_1F_2cos(\theta)}

= \sqrt{(F_1)^2 + (F_2)^2 + 2F_1F_2cos(45^o)}

= \sqrt{(F_1)^2 + (F_2)^2 + 2F_1F_2 \frac{1}{\sqrt{2}} }

= \sqrt{(F_1)^2 + (F_2)^2 + \sqrt{2} F_1F_2}

Similar questions