Math, asked by nayang646, 1 year ago

If figure AB || CD and CD| EF, find angle ACE.​

Attachments:

Answers

Answered by SnowySecret72
16

Answer:

<ACE=20°

Given:

AB||CD and CD||EF

To find:

<ACE

Solution:-

EF||CD (Given)

So

<E+<ECD=180°. {Sum of co.Int.<s}

130°+<ECD=180°

<ECD=180°-130°

<ECD=50°

Now; AB||CD

<A=<ACD {A.I.A}

70°=<ACD

Therefore

<ACD=70° and <ECD=50°

So;

<ACE=<ACD-<ECD

<ACE=70°-50°

<ACE=20°

------------------

<ACE=20°

Answered by Anonymous
16

\sf{Hello,Brainly\:User}

According to the given question

We have to find angle ACE.

Hence,

⟹\sf(EF||CD ) =  &gt; parallel</p><p></p><p>

⟹\sf(&lt; E+ &lt; ECD=180°)

⟹\sf(130 °+ &lt; ECD=180 °)  \\ </p><p>⟹\sf( &lt; ECD=180 ° -130 ° )

⟹\sf( &lt; ECD=50°)

⟹\sf(AB||CD) \\ </p><p>⟹\sf( &lt; A= &lt; ACD )

⟹(70°= &lt; ACD)

So,

 ⟹\sf( &lt; ACD=70°) \\ ⟹ \sf   (&lt; ECD=50°)

Hence,

 ⟹\sf(&lt; ACE= &lt; ACD- &lt; ECD)

⟹\sf( &lt; ACE=70°-50°) \\ </p><p>⟹\sf( &lt; ACE=20°)

Therefore answer = <ACE=20°

Note that

( ° ) => This symbol means degree.

Similar questions
Math, 1 year ago