If five tan theta is equal to 12 find 13 sign theta upon three
Answers
Answer:
The value of 13/3 sin theta is 4.
Step-by-step explanation:
Consider the provided information.
5 \tan \theta = 125tanθ=12
\tan \theta = \frac{12}{5}tanθ=
5
12
\tan \theta = \frac{Perpendicular}{Base}= \frac{12}{5}tanθ=
Base
Perpendicular
=
5
12
Therefore, Perpendicular= 12 and Base = 5.
Now use Pythagorean theorem.
(Hypotenuse)^2=(Perpendicular)^2+(Base)^2(Hypotenuse)
2
=(Perpendicular)
2
+(Base)
2
(Hypotenuse)^2=(12)^2+(5)^2(Hypotenuse)
2
=(12)
2
+(5)
2
(Hypotenuse)^2=144+25(Hypotenuse)
2
=144+25
(Hypotenuse)^2=169(Hypotenuse)
2
=169
Hypotenuse=13Hypotenuse=13
\frac{13}{3}\sin \theta=\frac{13}{3}\times \frac{Perpendicular}{Hypotenuse}
3
13
sinθ=
3
13
×
Hypotenuse
Perpendicular
\frac{13}{3}\sin \theta=\frac{13}{3}\times \frac{12}{13}=4
3
13
sinθ=
3
13
×
13
12
=4
Hence, \frac{13}{3}\sin \theta=4
3
13
sinθ=4 .
#Learn more
If tan theta=2
Step-by-step explanation:
i hope it's helpful.