Math, asked by jaydeep1704, 10 months ago

If five times the 5th term of an AP is equals to eight times the 8th term then show that its 13th term is zero.​

Answers

Answered by ayush3520
14

nth term of A.P=a+(n-1)d

5th term=a+(5-1)d

=a+4d

similarly,

8th term=a+7d

Now,

5(a+4d)=8(a+7d)

5a+20d=8a+56d

3a+36d=0

3(a+12d)=0

a+12d=0

a+(13-1)d=0

therefore,

n=13

hence proved

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{If 5 times the 5th term of an AP is equal } \\ \text{to 8 times its 8th term, show that the 13th} \\  \text{ term is zero.}</p><p>

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{  \:  \: Given, \:  \: }} \\\  \\  \mathtt{ \rightsquigarrow  5 \:  times \:  \:  of  \:  \: the  \:  \: 5th  \:  \: term = 8th \:  \:times} \\ \mathtt{ \: \: \: \:  \:\: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \: \: \: \:\: \: \:\: \: \:\: \:  \: \: of  \:  \: the  \:  \: 8th  \:  \: term} \\  \\  \\  \underline{ \mathfrak{ \:  \: </p><p>To  \: show : \mapsto \:  \: }} \\  \\  \mathtt{ \rightsquigarrow \: 13th  \:  \: term \:  \:  is \:  \:  equal  \:  \: to \:  \:  zero. \: }

 \underline{ \mathfrak{ \:  \: Suppose, \:  \: }} \\   \\ \mathtt{ \rightsquigarrow \: First  \:  \: term  \:  \: of  \:  \: the  \:  \: A.P. = a} \\  \mathtt{ \rightsquigarrow \: Difference = d}

 \underline{ \bold{ \:  A.T.Q.,  \: }} \\  \\ \:  \:  \:  \:  \:  \:  \mathtt{ 5  \times T_5 = 8 \times  T_8 }\\  \\ \mathtt{\Longrightarrow \:  5[ a + (5-1)d]=8 [ a + (8-1)d]} \\  \\   \mathtt{\Longrightarrow 5(a  + 4d)= 8 (a+7d) }\\  \\    \mathtt{ \Longrightarrow 5a + 20 \: d = 8a + 56 \: d} \\  \\  \mathtt{  \Longrightarrow 5a - 8a = 56 \: d    - 20 \: d}\\  \\  \mathtt{\Longrightarrow - 3a   =  36 \: d}\\  \\   \mathtt{\Longrightarrow  a =  \frac{36 \: d}{ -  3}}  \\  \\  \:  \:  \:  \mathtt{ \therefore \:  \: \underline{  \: a = -  12 \: d \: }}</p><p></p><p>

  \underline{\mathfrak{ \: Now \: }} \\  \\ \mathtt {13th  \:  \: term,  \: T_{13 }= a + [(13-1)d] } \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathtt{ = a + 12 \: d} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = ( - 12 \: d) + 12 \: d } \\  \mathtt{\:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \red{[As \:  \: a  =  - 12 \: d]}} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\mathtt{ =  - 12 \: d + 12 \: d} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \mathtt{ = 0} \\  \\  \\    \huge{\mathtt{ \therefore \:  \:  \underline{ \:  \: 13th  \:  \: term \:  = 0 \:  \: }} }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: </p><p> \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ \underline{ \: Hence \:  \: proved. \:  \: }} \:

Similar questions