if five times the the fifth term of an AP is equal to 8 times the 8th term,show that it's 13 th term is 0
Answers
Answered by
3
Hii...☺
Here is your answer.....☺
==================================
➡ Fifth term of A.P = a + ( 5 - 1 )d = a + 4d
➡ Eighth term of A.P = a + ( 8 - 1)d = a + 7d.
To prove : 13 th term = 0
=> a + ( 13 - 1 ) d = 0
=> a + 12d = 0
According to question we have,
=> 5( a + 4d) = 8 ( a + 7d)
=> 5a + 20d = 8a + 56d
=> 20d - 56d = 8a - 5a
=> -36d = 3a
=> 3a + 36d = 0
=> 3( a + 12d) = 0
=> a + 12d = 0.
Hence, proved.
=================================
➡ 13 th term of A.P is equal to 0.
=================================
☺ Thanks......
Hope this helps you......✨✨✨
Here is your answer.....☺
==================================
➡ Fifth term of A.P = a + ( 5 - 1 )d = a + 4d
➡ Eighth term of A.P = a + ( 8 - 1)d = a + 7d.
To prove : 13 th term = 0
=> a + ( 13 - 1 ) d = 0
=> a + 12d = 0
According to question we have,
=> 5( a + 4d) = 8 ( a + 7d)
=> 5a + 20d = 8a + 56d
=> 20d - 56d = 8a - 5a
=> -36d = 3a
=> 3a + 36d = 0
=> 3( a + 12d) = 0
=> a + 12d = 0.
Hence, proved.
=================================
➡ 13 th term of A.P is equal to 0.
=================================
☺ Thanks......
Hope this helps you......✨✨✨
Answered by
2
5th term = a + 4d
8th term = a + 7d
==================
According to the given informations,
5th term = 8th term
5(a + 4d) = 8(a + 7d)
5a + 20d = 8a + 56d
3a = -36d
a = -12d ------1equation
Now,
13th term = a + 12d
a + 12d
Putting the value of a from 1equation,
=> -12d + 12d
=> 0
I hope this will help you
-by ABHAY
8th term = a + 7d
==================
According to the given informations,
5th term = 8th term
5(a + 4d) = 8(a + 7d)
5a + 20d = 8a + 56d
3a = -36d
a = -12d ------1equation
Now,
13th term = a + 12d
a + 12d
Putting the value of a from 1equation,
=> -12d + 12d
=> 0
I hope this will help you
-by ABHAY
Similar questions