Math, asked by arpitsahu2091, 6 months ago

If focal chord of an ellipse y^2=b^2[1-x^2] cuts the ellipse at points whose eccentric angles are 5pi/12 and 23pi/12 then the value of b(b<1) is

Answers

Answered by Anonymous
16

Answer:

if focal chord of an ellipse y^ 2=b^2[1-x^2] cuts the ellipse at points whose eccentric angles are 5pi/12

Step-by-step explanation:

May this ANSWER will help you plz mark has brainliest plz

Answered by ritikkumar269
1

Answer:

The value of b(b &lt; 1) is -\sqrt{\frac{\cos ^{2} \frac{5 \pi}{12}}{4}+1}.

Step-by-step explanation:

The focal chord of an ellipse =y^{2}=b^{2}\left(1-x^{2}\right).

\quad y^{2}=b^{2}\left(1-x^{2}\right)\\&amp;\Rightarrow y^{2}=b^{2}-b^{2} x^{2}\\&amp;\Rightarrow b^{2} x^{2}+y^{2}=b^{2}\\&amp;\Rightarrow \frac{x^{2}}{1}+\frac{y^{2}}{b^{2}}=1\end{aligned}

We have a=1.

The focal chord of the given ellipse cuts the ellipse at points whose eccentric angles are \frac{5\pi}{12} and \frac{23\pi}{12}.

Point $p(A \cos \theta, B \sin \theta)$

$A\left[\cos \left(\frac{5 \pi}{12}\right), b \sin \left(\frac{5 \pi}{12}\right)\right]$

And $B\left[\cos \left(\frac{25 \pi}{12}\right), b \sin \left(\frac{23 \pi}{12}\right)\right]$

$B\left[\cos \left(x+\frac{5 \pi}{12}\right), b \sin \left(x+\frac{5 \pi}{12}\right)\right.$

\Rightarrow B\left[-\cos \frac{5 \pi}{12},-{bsin} \frac{5 \pi}{\sqrt{2}}\right]

Equation of AB:

$y-\left(-b \sin \frac{5 \pi}{12}\right)=\frac{b \sin \frac{5 \pi}{12}-\left(-b \sin \frac{5 \pi}{12}\right)}{\cos \frac{5 \pi}{12}\left(-\cos \frac{5 \pi}{12}\right)}\left(x-(-b \sin \frac{5 \pi}{12})\right) ...... (1)

It passes through \pi$ at the locus ($ ae, 0$)=(e, 0)=\left(\sqrt{1-b^{2}}, 0\right)$.

\begin{aligned}&amp;b^{2}=a^{2}\left(1-e^{2}\right) \\&amp;b^{2}=1-e^{2} \\&amp;e=\sqrt{1-b^{2}}\end{aligned}

Putting e=\sqrt{1-b^{2}} in equation 1:

b \sin \frac{5 \pi}{12}=2 b \tan \frac{5 \pi}{12}\left[\left(\sqrt{1-b^{2}}+\cos \frac{5 \pi}{12}\right]\right.

\begin{aligned}&amp; \Rightarrow 1=\frac{2}{\cos \frac{5 \pi}{12}}\left[\sqrt{1-b^{2}}+\cos \frac{5 \pi}{12}\right] \\\Rightarrow &amp; \cos \frac{5 \pi}{12}=2 \sqrt{1-b^{2}}+2 \cos \frac{5 \pi}{12} \\\Rightarrow &amp;-\cos \frac{5 \pi}{12}=2 \sqrt{1-b^{2}}\end{aligned}

Now let's simplify and find the expression for b:

\frac{-\cos \frac{5 \pi}{12}}{2}= \sqrt{1-b^{2}}\\\frac{-\cos^2 \frac{5 \pi}{12}}{4}-1=-b^2\\b^2=\frac{\cos ^{2} \frac{5 \pi}{12}}{4}+1\\b(b &gt; 1)=\sqrt{\frac{\cos ^{2} \frac{5 \pi}{12}}{4}+1}, b(b &lt; 1)=-\sqrt{\frac{\cos ^{2} \frac{5 \pi}{12}}{4}+1}

Therefore, the value of b(b &lt; 1) is -\sqrt{\frac{\cos ^{2} \frac{5 \pi}{12}}{4}+1}.

Similar questions