Math, asked by sanoriyaneha, 4 months ago

If for an A.P., S15= 147 and s14=123 find t 15

(A) 24 (B) 23 (C) 47 (D) 46

Answers

Answered by pulakmath007
79

SOLUTION

TO CHOOSE THE CORRECT OPTION

If for an A.P

 \sf{S_{15}  = 147 \:  \: and \:  \:  S_{14} =123 \:  \:  \: then \:  \:  t_{15} =  } \:

(A) 24

(B) 23

(C) 47

(D) 46

EVALUATION

Let for the given AP

 \sf{n th  \: term =   \: t_n \:  and  \: Sum  \: of \:  first \:  n  \: terms = S_n}

Therefore

 \sf{ S_{15} = t_1 + t_2 + t_3 + .... + t_{14} + t_{15}} \:  \:  -  - (1)

 \sf{ S_{14} = t_1 + t_2 + t_3 + .... + t_{14} } \:  \:  -  - (2)

Equation 1 - Equation 2 gives

 \sf{S_{15} -  S_{14} = t_{15} } \:

 \sf{ \implies \:  t_{15}  = S_{15} -  S_{14} } \:

 \sf{ \implies \:  t_{15}  = 147 -  123 } \:

 \sf{ \implies \:  t_{15}  = 24 } \:

FINAL ANSWER

Hence the correct option is (A) 24

Answered by RvChaudharY50
42

Question :- if for an A.P., S(15) = 147 and S(14) = 123, find t(15).

(A) 24 (B) 23 (C) 47 (D) 46

Solution :-

given that,

→ sum of first 15 terms of an AP = 147

and,

→ sum of first 14 terms of an AP = 123

so,

→ a1 + a2 + a3 + a4 ____________ a15 = 147 ------- Eqn.(1)

→ a1 + a2 + a3 + a4 ____________ a14 = 123 ------- Eqn.(2)

Subtracting Eqn.(2) from Eqn.(1) , we get,

→ (a1 + a2 + a3 + a4 ____________ a15) - (a1 + a2 + a3 + a4 ____________ a14) = 147 - 123

→ a15 = 24 (A) (Ans.)

Hence, 15th term of given AP will be 24.

Learn more :-

evaluate the expression given by 83

https://brainly.in/question/14081691

If the nth term of an AP is (2n+5),the sum of first10 terms is

https://brainly.in/question/23676839

Similar questions