If for an AP. t10= 25 and t18= 45. Find the value of t14=?
Answers
Answer:
The value of t₁₄ = 35.
SOLUTION
We know that ,
tn = a + (n - 1)d
Therefore,
t₁₀ = a + (10 - 1)d
⇒ t₁₀ = a + 9d
∴ a + 9d = 25 (1)
Now Similarly,
t₁₈ = a + (18 - 1)d
⇒ t₁₈ = a + 17d
∴ a + 17d = 45 (2)
Next we must subtract (1) from (2)
a + 17d = 45
-a - 9d = -25
8d = 20
8d = 20
Now, let us substitute d = 5/2 in (1).
2a + 45 = 25 × 2
2a + 45 = 50
2a = 50 - 45
2a = 5
Now , ∵ We have the value of both d and a we can know obtain value of t₁₄.
t₁₄ = a + (14 - 1)d
t₁₄ = a + 13d
Here,
Now, let us take 5/2 out as common.
t₁₄ = 35
✳ t₁₄ = 35
Answer:
★ The value of t₁₄ = 35.
SOLUTION
We know that ,
tn = a + (n - 1)d
Therefore,
t₁₀ = a + (10 - 1)d
⇒ t₁₀ = a + 9d
∴ a + 9d = 25 \longrightarrow⟶ (1)
Now Similarly,
t₁₈ = a + (18 - 1)d
⇒ t₁₈ = a + 17d
∴ a + 17d = 45 \longrightarrow⟶ (2)
Next we must subtract (1) from (2)
a + 17d = 45
-a - 9d = -25
8d = 20
\implies⟹ 8d = 20
\implies \sf d = \dfrac{20}{8} = \dfrac{5}{2}⟹d=
8
20
=
2
5
Now, let us substitute d = 5/2 in (1).
\implies \sf a + 9*\dfrac{5}{2} = 25⟹a+9∗
2
5
=25
\implies \sf a + \dfrac{45}{2} = 25⟹a+
2
45
=25
\implies \sf \dfrac{2a + 45}{2} = 25⟹
2
2a+45
=25
\implies⟹ 2a + 45 = 25 × 2
\implies⟹ 2a + 45 = 50
\implies⟹ 2a = 50 - 45
\implies⟹ 2a = 5
\implies \sf a = \dfrac{5}{2}⟹a=
2
5
Now , ∵ We have the value of both d and a we can know obtain value of t₁₄.
\implies⟹ t₁₄ = a + (14 - 1)d
\implies⟹ t₁₄ = a + 13d
Here,
\sf a = \dfrac{5}{2}a=
2
5
\sf d = \dfrac{5}{2}d=
2
5
\implies \sf t_{14} = \dfrac{5}{2} + 13 ( \dfrac{5}{2})⟹t
14
=
2
5
+13(
2
5
)
Now, let us take 5/2 out as common.
\implies \sf t_{14} = \dfrac{5}{2} *( 13 + 1)⟹t
14
=
2
5
∗(13+1)
\implies \sf t_{14} = \dfrac{5}{2} *14⟹t
14
=
2
5
∗14
\implies \sf t_{14} = \dfrac{70}{2}⟹t
14
=
2
70
\implies⟹ t₁₄ = 35
✳ t₁₄ = 35