Physics, asked by ashok9933, 6 months ago

If for material Young's modulus is 6.6 x 1010 N/m2 and bulk
modulus is 11 x 101°N/m2 then the Poisson's ratio is
(A) 0.4
(B) 0.6
(C) 1
(D) infinity​

Answers

Answered by Anonymous
31

Given:

Young's modulus (Y) =  \sf 6.6 \times 10^{10} \ N/m^2

Bulk modulus (B) =  \sf 11 \times 10^{10} \ N/m^2

To Find:

Poisson's Ratio (σ)

Answer:

Relation between Young's modulus (Y), Bulk modulus (B) & Poisson's Ratio (σ):

 \boxed{ \boxed{ \bf{Y = 3B[1 - 2\sigma]}}}

By substituting values we get:

  \rm \leadsto Y = 3B[1 - 2\sigma] \\  \\   \rm \leadsto 6.6 \times  {10}^{10}  = 3(11 \times  {10}^{10}) [1 - 2\sigma] \\  \\ \rm \leadsto 6.6 \times   \cancel{{10}^{10} } = 33 \times   \cancel{{10}^{10}} [1 - 2\sigma] \\  \\ \rm \leadsto  1 - 2\sigma =  \dfrac{6.6}{33}  \\  \\ \rm \leadsto  1 - 2\sigma = 0.2 \\  \\\rm \leadsto  2\sigma = 1 - 0.2 \\  \\ \rm \leadsto  2\sigma =0.8 \\  \\ \rm \leadsto  \sigma = \dfrac{0.8}{2}  \\  \\  \rm \leadsto  \sigma = 0.4

 \therefore Poisson's Ratio (σ) = 0.4

Correct Option:  \mathfrak{(A) \ 0.4}

Answered by haze56
15

σ = 3B - Y/6B

= 3 × 11 ×10^10 - 6.6 × 10^10/6 × 11 × 10^10

= 0.4

Similar questions