Math, asked by tctripda719, 10 months ago

if for non-zero x,
af(x) + bf(1/x)=1/x-5
where a not equal to b, then f (2) =?​

Answers

Answered by RitaNarine
1

Given:

For non-zero x,

af(x) + bf(1/x)=1/(x-5)  , where a ≠ b

To Find:

The value of f at x  = 2 , that is f ( 2 ).

Solution :

Here we can solve the value of f(2) by converting this expression into a linear system of two equations.

   ( i ) Let x =2 .

  • a f ( 2 ) + b f ( 1/2) = 1/(2-5) = -1/3 --(( 1 ))

    ( i i ) Let x = 1/2

  • a f ( 1/2 ) + b f (2 ) = 1/(1/2 - 5 ) = -2/9 --((2))

Now similar to solving a linear equation of x and y ,

  • Multiply (( 1 )) by a
  • a²f(2) + abf(1/2) = -a/3 -- ((3))

  • and multiply (( 2 )) by b .
  • abf(1/2) + b²f(2) = -2b/9 --((4))

Subtracting (( 4 )) from (( 3 )) eliminates f(1/2) and gives f(2) .

  • ((4 )) - (( 3 ))

  • f ( 2 ) ( b² -  a² ) = -2b/9 + a/3 = ( 3a - 2b )/9
  • f( 2 ) = (3a - 2b )/9(b² - a²)

Therefore value of f(2) is equal to  (3a - 2b )/9(b² - a²)

Answered by MysticalStar07
22

Answer:

\sf \purple {✎\:Given \: x \cancel  = 0 \: and \: a  \cancel  = b  \: such \: that}

 \sf  \blue {✎\:af  \: (x) + bf( \dfrac{1}{x} ) =  \dfrac{1}{x} - 5....(1) }

\sf \red {✭Substitute \:  \dfrac{1}{x}  in \: place \: of \: x \: ,we \: get}

\sf \red \implies \orange {af( \dfrac{1}{x})  + bf( \dfrac{1}{( \dfrac{1}{x}) } ) =  \dfrac{1}{( \dfrac{1}{x}) }}

\sf \purple \implies \pink { af \dfrac{1}{x}  + bf (x) = x - 5 ....(2) }

\sf \green{➯\:On \: adding \: equations \: (1) \: and  \: (2) \: we \: get}

\sf \orange \implies \red {af(x) + bf( \dfrac{1}{x} ) + af( \dfrac{1}{x} ) + bf(x) =  \dfrac{1}{x}  - 5 + x - 5}

\sf \pink \implies \purple {af(x) + bf( x ) + af( \dfrac{1}{x} ) + bf( \dfrac{1}{x} ) = x +  \dfrac{1}{x}  - 10}

\sf \green \implies \blue {(a + b) \: f(x) + (a + b)  \: f( \dfrac{1}{x} ) =  x +  \dfrac{1}{x}  - 10}

\sf \red \implies \orange {(a + b) \: f (x) + f (\dfrac{1}{x} ) = x +  \dfrac{1}{x}  - 10}

 \bf \therefore f(x) + f (\dfrac{1}{x} ) =  \dfrac{1}{a  + b} (x +  \frac{1}{x}  - 10)...(3)

\sf \purple \implies \pink {af(x) + bf( \dfrac{1}{x} ) - af(  \dfrac{1}{x}) + bf(x) =  \dfrac{1}{x}   - 5 - (x - 5)}

\sf \blue \implies \green {af(x) + bf( \dfrac{1}{x} ) - af( \dfrac{1}{x} ) - bf( x ) =  \dfrac{1}{x}  - 5 - x + 5}

\sf \orange \implies \red {af(x) - bf(x) - af( \dfrac{1}{x} ) + bf( \dfrac{1}{x} ) =  \dfrac{1}{x}  - x}

\sf \pink \implies \purple {(a + b) \: f(x) - (a - b) \: f (\dfrac{1}{x} ) =  \dfrac{1}{x}  - x}

 \bf  \therefore f(x) - f( \dfrac{1}{x} ) =  \dfrac{1}{a - b} ( \dfrac{1}{x}  - x)...(4)

\sf \blue {✯\:On \: adding \: equations \: (3) \: and \: (4)}

\sf \green{we \: get}

\sf \red \implies \orange {f(x) + f( \dfrac{1}{x} ) + f(x) - f( \dfrac{1}{x} ) =  \dfrac{1}{a - b} (x  +  \dfrac{1}{x}  - 10) +  \dfrac{1}{a - b} ( \dfrac{1}{x}  - x)}

\sf \purple \implies \pink {2f(x) =  \dfrac{(a - b)(x +  \dfrac{1}{x} - 10  ) + (a + b)( \dfrac{1}{x} - x) }{(a + b)(a - b)}}

\sf \green \implies \blue{2f(x) =  \dfrac{1}{ {a}^{2} -  {b}^{2}  } (a - b)x +  \dfrac{(a - b)}{x} - 10(a - b) +  \dfrac{(a + b)}{x}   - (a + b)x}

\sf \orange \implies \red {2f(x) =  \dfrac{1}{ {a}^{2} -  {b}^{2}  } (a - b - a  - b)x +  \dfrac{(a - b + a + b)}{x}  - 10(a - b)}

\sf \pink \implies \purple {2f(x) =  \dfrac{1}{ {a}^{2} -  {b}^{2}  } - 2bx +  \dfrac{2ax }  {x}   - 10(a - b)}

\sf \blue \implies \green {2f(x) =  \dfrac{2}{ {a}^{2} -  {b}^{2}  } - bx +  \dfrac{a}{x}   - 5(a - b)}

\sf \red \implies \orange {f(x) =  \dfrac{1}{ {a}^{2}  -   {b}^{2} }  - bx +  \dfrac{a}{x}  - 5(a - b)}

\sf \purple \implies \pink {f(x) =  \dfrac{1}{ {a}^{2}  -  {b}^{2}  } - bx +  \dfrac{a}{x}   -  \dfrac{5(a - b)}{ {a}^{2} -  {b}^{2} }}

\sf \green \implies \blue {f(x) =  \dfrac{1}{ {a}^{2} -  {b}^{2}  } - bx +  \dfrac{a}{x}   -  \dfrac{5(a - b)}{( a+b )( a-b )}}

 \bf \therefore \: f(x) =  \dfrac{1}{ {a}^{2}  -  {b}^{2} }  \dfrac{a}{x}  - bx -  \dfrac{5}{a + b}

\sf \red{✮\:Thus}

\sf \orange {☆\: f(x) =  \dfrac{1}{ {a}^{2}  -  {b}^{2} }  \dfrac{a}{x}  - bx -  \dfrac{5}{a + b} }

Similar questions