Math, asked by jodragon241103, 1 year ago

If for some angle theta , cot 2theta =1/root3, then find the value of sin 3 theta, where 2 theta < 90°

Answers

Answered by amcsa
45
cot2theta=1/
 \sqrt{3 }
cot 2theta= cot60
therefore 2theta=60
theta= 30

sin3theta=sin90=1

jodragon241103: Thank you soo much
Answered by talasilavijaya
19

Answer:

For θ = 30°, the value of sin3θ = 1.

Step-by-step explanation:

Given for some angle θ,

    cot2\theta=\dfrac{1}{\sqrt{3} }                ....(1)

As we know from the trigonometric values,

cot60^{o} =\dfrac{1}{\sqrt{3} }                  ....(2)

Combining equations (1) and (2), we get

cot2\theta=cot60^{o}

\implies 2\theta=60^{o}

which satisfies the given condition, 2\theta &lt; 90^{o}.

Now solving for the value of angle θ,

\implies \theta=\frac{60}{2} =30^{o}

Substituting the value of angle θ in

sin 3 \theta=sin 3 \times 30^{o} =sin 90^{o}

Again from the trigonometric values, we have sin 90^{o}=1

Therefore, for θ = 30°, the value of sin3θ = 1.

Similar questions