Math, asked by manuwara4201, 9 months ago

If fore on arithmetic progression the first term is 3 and the common difference is 6 then find S10

Answers

Answered by Anonymous
8

GiveN :

  • First term (a) = 3
  • Common Difference (d) = 6

To FinD :

  • Sum of 10 terms

SolutioN :

Use formula of sum of terms

\implies Sn = n/2[2a + (n - 1)d]

ㅤㅤㅤㅤㅤㅤㅤ

Put n = 10

ㅤㅤㅤㅤㅤㅤㅤ

\implies S10 = 10/2[2(3) + (10 - 1)6]

ㅤㅤㅤㅤㅤㅤㅤ

\implies S10 = 5[6 + (9)6]

ㅤㅤㅤㅤㅤㅤㅤ

\implies S10 = 5[6 + 54]

ㅤㅤㅤㅤㅤㅤㅤ

\implies S10 = 5[60]

ㅤㅤㅤㅤㅤㅤㅤ

\implies S10 = 300

ㅤㅤㅤㅤㅤㅤㅤ

\underline{\rm{\therefore \: Sum \: of \: 10 \: terms \: of \: AP \: is \: 300}}

Answered by InfiniteSoul
11

\sf{\underline{\boxed{\green{\large{\bold{ Given}}}}}}

  • first term = a = 3
  • common difference = d = 6

\sf{\underline{\boxed{\green{\large{\bold{ To\: find}}}}}}

  • sum of 1st 10 terms = n = ??

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf{\underline{\boxed{\blue{\large{\bold{ s_n = \dfrac{n}{2} ( 2a + ( n - 1)d ) }}}}}}

\sf\implies s_{10} = \dfrac{10}{2}( 2\times 3 + ( 10 - 1 ) 6 )

\sf\implies s_{10} = 5 ( 6 + 9 \times 6 )

\sf\implies s_{10} = 5 ( 6 + 54 )

\sf\implies s_{10} = 5 \times 60

\sf\implies s_{10} = 300

\sf{\underline{\boxed{\pink{\large{\mathfrak{ sum \: of \: first \: 10\: terms \: = \: 300}}}}}}

Similar questions