Math, asked by priyanshiaggarwal50, 1 year ago

if fx = sinx° find dy/dx

Answers

Answered by mathdude500
0

Appropriate Question:

\sf \: If \: y \:  =  \: sin {x}^{ \circ}, \: find \: \dfrac{dy}{dx} \\  \\

Answer:

\boxed{\sf \:  \:\dfrac{dy}{dx} \:  =   \: \dfrac{\pi }{180}\:cos {x}^{ \circ} \:  \: }   \\  \\

Step-by-step explanation:

Given that,

\sf \: \: y \:  =  \: sin {x}^{ \circ}\\  \\

can be rewritten as

\sf \: \: y \:  =  \: sin \dfrac{\pi x}{180} \\  \\

On differentiating both sides w. r. t. x, we get

\sf \: \:\dfrac{dy}{dx} \:  =  \:\dfrac{d}{dx}\left( sin \dfrac{\pi x}{180}\right) \\  \\

We know,

\boxed{\sf \: \dfrac{d}{dx}sinx = cosx \: } \\  \\

So, using this result, we get

\sf \: \:\dfrac{dy}{dx} \:  =  \:cos \dfrac{\pi x}{180}\dfrac{d}{dx}\left(\dfrac{\pi x}{180}\right) \\  \\

\sf \: \:\dfrac{dy}{dx} \:  =  \:cos \dfrac{\pi x}{180} \times \dfrac{\pi }{180} \times \dfrac{d}{dx}(x) \\  \\

We know,

\boxed{\sf \: \dfrac{d}{dx}x = 1 \: } \\  \\

So, using this result, we get

\sf \: \:\dfrac{dy}{dx} \:  =  \:cos \dfrac{\pi x}{180} \times \dfrac{\pi }{180} \times 1 \\  \\

\implies\sf \: \sf \: \:\dfrac{dy}{dx} \:  =   \: \dfrac{\pi }{180}\:cos {x}^{ \circ}   \\  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions